首页> 外文学位 >Computational-analysis assisted introduction of Friction Stir Welding into development of light-weight high-survivability military vehicles.
【24h】

Computational-analysis assisted introduction of Friction Stir Welding into development of light-weight high-survivability military vehicles.

机译:计算分析有助于将摩擦搅拌焊引入轻型高生存能力军用车辆的开发中。

获取原文
获取原文并翻译 | 示例

摘要

High strength aluminum alloys with superior blast/ballistic resistance against armor piercing (AP) threats and with high vehicle light-weighing potential are being increasingly used as military-vehicle armor. Due to the complex structure of these vehicles, they are commonly constructed through joining (mainly welding) of the individual components. Unfortunately, these alloys are not very amenable to conventional fusion based welding technologies (e.g. Gas Metal Arc Welding (GMAW)) and in-order to obtain high-quality welds, solid-state joining technologies such as Friction Stir Welding (FSW) have to be employed. However, since FSW is a relatively new and fairly complex joining technology, its introduction into advanced military vehicle underbody structures is not straight forward and entails a comprehensive multi-prong approach which addresses concurrently and interactively all the aspects associated with the components/vehicle-underbody design, fabrication and testing. One such approach is developed and applied in the present work. The approach consists of a number of well-defined steps taking place concurrently and relies on two-way interactions between various steps. In the present work, two of these steps are analyzed in great detail: (a) Friction Stir Welding process modeling; and (b) Development and parameterization of material models for the different weld-zones.;Within the FSW process modeling, interactions between the rotating and advancing pin-shaped tool (terminated at one end with a circular-cylindrical shoulder) with the clamped welding-plates and the associated material and heat transport are studied computationally using a fully-coupled thermo-mechanical finite-element analysis. To surmount potential numerical problems associated with extensive mesh distortions/entanglement, an Arbitrary Lagrangian Eulerian (ALE) formulation was used which enabled adaptive re-meshing (to ensure the continuing presence of a high-quality mesh) while allowing full tracking of the material free surfaces/interfaces. To demonstrate the utility of the present computational approach, the analysis is applied to the aluminum-alloy grades, AA5083 (a solid-solution strengthened and strain-hardened/stabilized Al-Mg alloy) and AA2139 (a precipitation hardened quaternary Al-Cu-Mg-Ag alloy). Both of these alloys are currently being used in military-vehicle hull structural and armor systems. In the case of non-age-hardenable AA5083, the dominant microstructure evolution processes taking place during FSW are extensive plastic deformation and dynamic re crystallization of highly-deformed material subjected to elevated temperatures approaching the melting temperature. In the case of AA2139, in addition to plastic deformation and dynamic recrystallization, precipitates coarsening, over-aging, dissolution and re-precipitation had to be also considered. To account for the competition between plastic-deformation controlled strengthening and dynamic-recrystallization induced softening phenomena during the FSW process, the original Johnson-Cook strain- and strain-rate hardening and temperature-softening material strength model is modified using the available recrystallization-kinetics experimental data. Lastly, the computational results obtained in the present work are compared with their experimental counterparts available in the open literature. This comparison revealed that general trends regarding spatial distribution and temporal evolutions of various material-state quantities and their dependence on the FSW process parameters are reasonably well predicted by the present computational approach.;The introduction of newer joining technologies like the so-called Friction Stir Welding (FSW) into automotive engineering entails the knowledge of the joint-material microstructure and properties. Since, the development of vehicles (including military vehicles capable of surviving blast and ballistic impacts) nowadays involves extensive use of the computational engineering analyses (CEA), robust high-fidelity material models are needed for the FSW joints. A two-level material-homogenization procedure is proposed and utilized in the present work in-order to help manage computational cost and computer storage requirements for such CEAs. The method utilizes experimental (microstructure, micro-hardness, tensile testing and X-ray diffraction) data to construct: (a) the material model for each weld zone; and (b) the material model for the entire weld. The procedure is validated by comparing its predictions with the available experimental results and with the predictions of more-detailed but more costly computational analyses.
机译:具有更高的耐爆炸/弹道抵抗装甲穿甲(AP)威胁和高车辆轻量化潜力的高强度铝合金正越来越多地用作军用装甲。由于这些车辆的复杂结构,它们通常是通过各个部件的连接(主要是焊接)来构造的。不幸的是,这些合金不是非常适合传统的基于熔合的焊接技术(例如,气体保护金属电弧焊(GMAW)),并且为了获得高质量的焊接,必须采用固态搅拌技术(例如,摩擦搅拌焊(FSW))被雇用。但是,由于FSW是一种相对较新且相当复杂的连接技术,因此将其引入先进的军用车辆底部结构并不是一件容易的事,它需要一种全面的多管齐下的方法,该方法可以同时交互地解决与零部件/车辆底部相关的所有方面设计,制造和测试。开发了一种这样的方法,并将其应用到当前工作中。该方法包括多个同时进行的明确定义的步骤,并且依赖于各个步骤之间的双向交互。在本工作中,将对其中的两个步骤进行详细分析:(a)搅拌摩擦焊过程建模; (b)针对不同焊接区域的材料模型的开发和参数化。在FSW过程建模中,旋转和前进的销形工具(一端终止于圆柱肩部)与夹紧焊接之间的相互作用使用完全耦合的热机械有限元分析,对板和相关的材料及热传递进行了计算研究。为了克服与广泛的网格变形/纠缠相关的潜在数值问题,使用了任意拉格朗日欧拉(ALE)公式,该公式能够进行自适应重新网格化(以确保高质量网格的持续存在),同时允许完全跟踪材料表面/界面。为了证明本计算方法的实用性,该分析适用于铝合金牌号AA5083(固溶强化和应变硬化/稳定化的Al-Mg合金)和AA2139(沉淀硬化四元Al-Cu-镁银合金)。目前,这两种合金都用于军事车辆的船体结构和装甲系统。对于不可时效硬化的AA5083,在FSW期间发生的主要微观组织演变过程是广泛的塑性变形和高度变形材料的动态再结晶,这些材料在接近熔化温度的高温下经受住了高温处理。对于AA2139,除了塑性变形和动态再结晶外,还必须考虑沉淀物的粗化,过时效,溶解和再沉淀。为了解决FSW过程中塑性变形控制的强化与动态再结晶引起的软化现象之间的竞争,使用可用的再结晶动力学修改了原始的Johnson-Cook应变和应变速率硬化与温度软化材料强度模型实验数据。最后,将当前工作中获得的计算结果与开放文献中的实验结果进行比较。这种比较表明,通过当前的计算方法可以很好地预测有关各种材料状态量的空间分布和时间演变及其对FSW工艺参数的依赖性的总体趋势。;引入了新的连接技术,如所谓的摩擦搅拌将焊接(FSW)焊接到汽车工程中需要了解接头材料的微观结构和性能。由于如今的车辆(包括能​​够承受爆炸和弹道冲击的军用车辆)的开发涉及计算工程分析(CEA)的广泛使用,因此FSW接头需要鲁棒的高保真材料模型。提出了两层材料均质化程序,并在本工作中使用了该程序,以帮助管理此类CEA的计算成本和计算机存储要求。该方法利用实验(显微组织,显微硬度,拉伸试验和X射线衍射)数据来构建:(a)每个焊接区的材料模型; (b)整个焊缝的材料模型。通过将该程序的预测与可用的实验结果以及更详细但成本更高的计算分析的预测进行比较,可以验证该程序的有效性。

著录项

  • 作者

    Arakere, Guruprasad.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Engineering Mechanical.;Military Studies.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 193 p.
  • 总页数 193
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:45:09

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号