首页> 外文学位 >Processing and mechanical properties of nanostructured copper.
【24h】

Processing and mechanical properties of nanostructured copper.

机译:纳米结构铜的加工和机械性能。

获取原文
获取原文并翻译 | 示例

摘要

The high strength and other unusual mechanical properties of nanostructured materials have stimulated widespread interest in recent years. In spite of the enormous efforts over the last decade, the deformation behavior—especially the tensile ductility—of these novel materials remains poorly understood. This dissertation is focused on the processing and understanding of the mechanical properties (especially tensile properties) of nanocrystalline (grain sizes 100 nm) and ultrafine-grained (grain sizes between 100–500 nm) copper.; A confined cryogenic-temperature (CT) cold rolling technique was developed in this work to prepare nanostructured Cu through severe plastic deformation at low temperatures. Both the high-strain-rate loading and prolonged rolling are found to have strong effects on the development of nanoscale grain sizes in CT-rolled Cu, and are closely tied with migration or progressive dynamic recrystallization mechanisms.; Microsample tensile testing on nanocrystalline (nc) Cu with average grain sizes of 30 nm revealed a yield strength of 760 MPa but a very low tensile elongation to failure (3%). Such an early failure should come as no surprise, as nc materials do not work harden through the stages as in coarse-grained forms. Subsequent tensile testing on ultrafine-grained (100–300 nm) Cu indicates that these materials are intrinsically ductile, but suffer from early inhomogeneous deformation (necking) and thus a marked drop of tensile ductility compared with coarse-grained Cu. The unstable tensile deformation is due to the small strain hardening capacity as well as a low strain rate sensitivity only slightly above that of coarse-grained Cu, as uncovered in compression tests. A good combination of strength and ductility (in terms of post-uniform elongation) was achieved by refining the grain size within the UFG regime.; In an effort to improve the uniform tensile elongation in nanostructured Cu, a bimodal microstructure was developed through CT rolling followed by thermal annealing/recrystallization treatment. The new material has an excellent combination of high strength and high ductility, far beyond the expectations of the strength-ductility trade-off known for all previous Cu. Deformation twinning was observed for the first time in Cu under quasistatic loading at room temperature. These results indicate that, by manipulating the grain size distribution, or by exploiting cryogenic temperatures to suppress dynamic recovery during deformation, a strong strain hardening, and hence large uniform strains are achievable in nanostructured Cu. The new findings are projected to have universal importance in developing high strength and high ductility nanostructured materials for structural applications.
机译:近年来,纳米结构材料的高强度和其他异常的机械性能引起了人们的广泛兴趣。尽管在过去的十年中付出了巨大的努力,但对于这些新型材料的变形行为(尤其是拉伸延展性)仍然知之甚少。本论文的重点是对纳米晶体(晶粒尺寸<100 nm)和超细晶粒(晶粒尺寸100-500 nm)的机械性能(特别是拉伸性能)的加工和理解。在这项工作中开发了一种密闭的低温(CT)冷轧技术,以通过在低温下剧烈的塑性变形来制备纳米结构的Cu。高应变率加载和长时延轧制都对CT轧制Cu中纳米级晶粒尺寸的发展具有强烈影响,并且与迁移或渐进动态再结晶机制密切相关。在平均晶粒尺寸为30 nm的纳米晶体(nc)Cu上进行的微样品拉伸试验表明,屈服强度为760 MPa,但拉伸断裂伸长率非常低(<3%)。这样的早期失败应该不足为奇,因为数控材料无法像粗粒度形式那样在各个阶段硬化。随后对超细晶粒(100-300 nm)的铜进行拉伸测试表明,这些材料本质上具有延性,但与早期粗晶粒铜相比,具有早期的不均匀变形(颈缩),因此拉伸延性明显下降。不稳定的拉伸变形是由于较小的应变硬化能力以及较低的应变率敏感性而导致的,该敏感性仅略高于粗晶粒铜的应变率敏感性,这在压缩测试中没有发现。通过在UFG范围内细化晶粒尺寸,达到​​了强度和延展性的良好组合(就均匀后伸长率而言)。为了改善纳米结构Cu中的均匀拉伸伸长率,通过CT轧制,然后进行热退火/重结晶处理,开发出一种双峰微结构。新材料具有高强度和高延展性的极佳组合,远远超出了以前所有铜已知的强度-延展性折衷的期望。在室温下在准静态载荷下首次在铜中观察到变形孪晶。这些结果表明,通过控制晶粒尺寸分布,或通过利用低温抑制变形过程中的动态恢复,纳米结构化的铜可以获得很强的应变硬化,因此可以获得大的均匀应变。预计新发现对开发用于结构应用的高强度和高延展性的纳米结构材料具有普遍的重要性。

著录项

  • 作者

    Wang, Yinmin.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Engineering Materials Science.; Engineering Mechanical.; Engineering Metallurgy.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 p.911
  • 总页数 196
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号