首页> 外文学位 >Novel biomimetic scaffolds for small diameter vascular tissue engineering.
【24h】

Novel biomimetic scaffolds for small diameter vascular tissue engineering.

机译:用于小直径血管组织工程的新型仿生支架。

获取原文
获取原文并翻译 | 示例

摘要

Cardiovascular diseases (CVD) remain the leading cause of mortality, and account for 15% of the total health expenditure in the United States. Tissue-engineered vascular grafts show many advantages, and provide a promising treatment option. Scaffolds play an important role in vascular tissue engineering by supporting cell adhesion, migration, differentiation and proliferation. Understanding of the relationships between scaffolds and cell responses will provide critical guidance in scaffold design for vascular tissue engineering. This doctoral dissertation aimed to explore some innovative approaches in scaffold design by mimicking the native ECM of vascular tissues. Firstly, multifunctional nanofibers were achieved by incorporating various bioactive molecules into electrospun polycaprolactone (PCL) fibers. The release profiles of BSA (as a model growth factor) with various loading concentrations in PCL nanofibers were studied. The biological activity of functionalized fibers was proven by culturing human dermal fibroblasts on fibronectin-containing nanofibers, showing preferred cell attachment. Furthermore, a novel bottom-up layer-by-layer cell assembly approach was proposed to create a multilayered cell-nanofiber constructs towards vascular tissue formation. A series of studies have demonstrated several advantages of this approach over conventional methods in terms of well-controlled distribution of various cells and accelerated formation of layered tissues. To fabricate biomimetic nanofibers for vascular smooth muscle cells (MOVAS) and endothelial cells (MS-1), blends of PCL and collagen containing either elastin or matrigel were electrospun into nanofiber meshes and their properties were characterized. Matrigel-containing nanofibers favored the adhesion and proliferation of MS-1 cells and promoted the gene expression for CD31, vWF, integrin-beta 3 and NOS. Elastin-containing nanofibers supported the growth of MOVAS and significantly upregulated the expression of SMHC. 3D assembly of MOVAS with elastin-containing nanofibers followed by one layer MS-1 with matrigel-containing nanofibers led to the rapid formation of vascular patch-like constructs. Taken together, the biomimetic approach presented in this dissertation represents a new avenue to maximally recapitulate the native vascular tissue environment and allow the possible formation of vascular grafts with similar mechanical properties and cellular responses close to native counterparts. The layer-by-layer approach proves to be effective in rapid formation of multilayered cell-nanofiber constructs with well-controlled cell distribution, important to vascular tissue engineering.
机译:心血管疾病(CVD)仍然是导致死亡的主要原因,占美国总医疗支出的15%。组织工程化的血管移植物显示出许多优点,并提供了有希望的治疗选择。支架通过支持细胞粘附,迁移,分化和增殖在血管组织工程中发挥重要作用。了解支架与细胞反应之间的关系将为血管组织工程支架设计提供关键指导。该博士论文旨在通过模仿血管组织的天然ECM,探索一些新颖的支架设计方法。首先,通过将各种生物活性分子掺入电纺聚己内酯(PCL)纤维中来实现多功能纳米纤维。研究了PCL纳米纤维中各种负载浓度下BSA(作为模型生长因子)的释放曲线。通过在含纤连蛋白的纳米纤维上培养人的皮肤成纤维细胞,证明了功能化纤维的生物活性,显示出较好的细胞附着性。此外,提出了一种新颖的自下而上的逐层细胞组装方法,以创建用于血管组织形成的多层细胞-纳米纤维构建体。一系列研究表明,就各种细胞的良好控制分布和层状组织的加速形成而言,该方法相对于常规方法具有多个优点。为了制造用于血管平滑肌细胞(MOVAS)和内皮细胞(MS-1)的仿生纳米纤维,将PCL和含有弹性蛋白或基质胶的胶原蛋白的混合物电纺成纳米纤维网,并对其特性进行了表征。含基质胶的纳米纤维有利于MS-1细胞的粘附和增殖,并促进CD31,vWF,整联蛋白β3和NOS的基因表达。含弹性蛋白的纳米纤维支持MOVAS的生长并显着上调SMHC的表达。 MOVAS与含弹性蛋白的纳米纤维的3D组装,然后与含基质胶的纳米纤维的1层MS-1组装,导致血管斑块状结构的快速形成。综上所述,本文提出的仿生方法代表了最大程度地概括天然血管组织环境并允许可能形成具有相似机械特性和接近天然对应物的细胞反应的血管移植物的新途径。事实证明,逐层方法可有效地快速形成具有良好控制的细胞分布的多层细胞-纳米纤维结构,这对血管组织工程很重要。

著录项

  • 作者

    Yang, Xiaochuan.;

  • 作者单位

    Stevens Institute of Technology.;

  • 授予单位 Stevens Institute of Technology.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 197 p.
  • 总页数 197
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号