首页> 外文学位 >Information Transmission in Primary Afferent Neurons of the Vestibular System.
【24h】

Information Transmission in Primary Afferent Neurons of the Vestibular System.

机译:前庭系统初级传入神经元的信息传递。

获取原文
获取原文并翻译 | 示例

摘要

The semicircular canals of the vertebrate inner ear encode information about dynamical head rotational stimuli and convey it to the central nervous system in real-time via thousands of primary afferent neurons. One of the most striking characteristics of this afferent population is the broad diversity in spontaneous discharge regularity. Afferent spontaneous discharge represents a potential source of noise that could make it more difficult for central vestibular neurons to discern discharge components associated with the stimulus, and the amount of potential noise at frequencies present in the stimulus increases as the regularity of discharge decreases. This latter fact suggests that the lower potential noise levels in the spontaneous activity of regularly firing afferents means that they transmit more information to the brain than do irregularly firing afferents, as quantified by mutual information rates (I). Some support for this understanding of the effect of spontaneous discharge regularity on I comes from data from macaque vestibular afferents, in which regular afferents exhibited higher mutual information per spike (Ispike) than irregular afferents (Sadeghi et al. 2007).;In Chapter 2 we examined whether, as a general rule among primary vestibular afferents among all vertebrate species, regular afferents always transmit more information than irregular afferents by using repeated presentations of broadband Gaussian-distributed rotational stimuli to assess stimulus-response coherence ( g2sr ), response-response coherence ( g2rr ), signal-to-noise ratio (SNR), I, and I spike in horizontal semicircular canal (HC) afferents in bullfrogs. In this species, irregular afferents have much higher response gains than regular afferents, and their responses are highly nonlinear due to their relatively low spontaneous discharge rates, which allow them to be driven to silence during sufficiently intense inhibitory portions of stimuli. In contrast with the macaque, it was found that regular bullfrog afferents had low g2sr and g2rr across the stimulus frequency band, which translated to low SNR, I, and Ispike. Conversely, irregular bullfrog afferents had high g2sr and g2rr across the stimulus frequency band, which translated to high SNR, I, and Ispike. Decomposing the responses into signal and noise components revealed that: 1) in some irregular afferents the power spectral density (PSD) of perstimulus noise was much lower than the PSD of spontaneous discharge; and 2) SNR was highly correlated with signal levels and uncorrelated with noise levels. The first result highlighted the point that spontaneous activity does not necessarily completely carry over to perstimulus noise, and the second result suggested that response gain—rather than spontaneous activity—is the main factor determining information transmission rates in bullfrogs.;Because we found that signal levels are the main determinant of SNR and information rates in bullfrogs, we recorded from vestibular afferents in chinchillas to see whether this might also be true in mammals (Chapter 3). As in other mammals, irregular chinchilla afferents generally have higher response gains than regular afferents, though there is a subpopulation of low-gain irregulars that have dendritic terminals consisting exclusively of calyces. We found that in chinchillas both regular and irregular afferents can have either low or high SNR, I, and Ispike. Decomposing responses into signal and noise revealed that: 1) spontaneous activity is a bigger determinant of noise in irregular afferents in the chinchilla than in the bullfrog indicating that in the bullfrog; and 2) SNR is not determined by either signal or noise alone in the chinchilla. Together, these two findings suggest that for chinchilla vestibular afferents perstimulus noise levels are largely set by spontaneous discharge regularity and then information transmission rates may be either low or high, depending on whether an afferent's response gain is high enough to impart signal levels that can compensate for the noise levels. Comparing Ispike with gains of responses to a low frequency (1.6 Hz) sinusoidal stimulus allowed us to classify the low-Ispike irregular afferents as putative calyx-only afferents.;In Chapter 4 we applied information theoretic measures and multineuronal optimal linear decoding to test the hypothesis that the primary afferent neurons projecting from the anterior semicircular canal (AC) could be providing a substantial amount of information to the brain regarding rotations in the horizontal plane. We found that AC afferents transmitted as much information as HC afferents and multineuronal optimal linear decoders performed best when they included irregular afferents from both the AC and HC. These findings suggest that the central nervous system could be using the responses of AC afferents to help with coding of head rotations in the horizontal plane.;Overall, our studies of information transmission properties in primary vestibular afferents promise to provide a fruitful basis for beginning to integrate the known primary afferent heterogeneity into existing models of vestibular function (e.g., control systems models or probabilistic optimal Bayesian estimation models) in order to gain new insights into how the organizational principles of central vestibular circuits in each individual species are specifically tailored for their ethological needs.
机译:脊椎动物内耳的半规管编码有关动态头部旋转刺激的信息,并通过数千个初级传入神经元将其实时传输到中枢神经系统。该传入人口最显着的特征之一是自发放电规律的广泛差异。传入的自发放电是潜在的噪声源,可能使中枢前庭神经元更难辨别与刺激相关的放电成分,并且随着放电规律性的降低,刺激中出现的频率处的潜在噪声量会增加。后一个事实表明,定期互传的自发活动中较低的潜在噪声水平意味着,与不定期互传的相比,它们向大脑传输的信息更多,这是通过相互信息率(I)量化的。对自发放电规律对I的影响的这种理解的某些支持来自猕猴前庭传入的数据,其中常规传入的每个峰值(Ispike)的互信息高于不规则传入的(Sadeghi et al。2007)。;在第二章中我们通过使用宽带高斯分布旋转刺激的重复表示来评估刺激响应相干性(g2sr),响应响应,来检查是否作为所有脊椎动物物种初级前庭传入中的一般规则,正常传入总是比不规则传入传递更多的信息。相干性(g2rr),信噪比(SNR),牛蛙的水平半圆形通道(HC)传入的I和I峰值。在该物种中,不规则的传入比常规的传入具有更高的响应增益,并且由于其相对较低的自发放电速率,它们的响应是高度非线性的,这使得它们在足够强烈的刺激抑制部分被驱使沉默。与猕猴相反,发现普通牛蛙传入的刺激频带上的g2sr和g2rr较低,这导致SNR,I和Ispike较低。相反,不规则的牛蛙传入神经在整个刺激频段上具有较高的g2sr和g2rr,这转化为较高的SNR,I和Ispike。将响应分解为信号和噪声分量后发现:1)在一些不规则的传入中,激励噪声的功率谱密度(PSD)远低于自发放电的PSD; 2)SNR与信号电平高度相关,而与噪声电平无关。第一个结果强调了自发活动不一定完全传播到刺激噪声的观点,第二个结果表明,响应增益而不是自发活动是决定牛蛙信息传输速率的主要因素。血脂水平是牛蛙信噪比和信息率的主要决定因素,我们从龙猫的前庭传入记录中观察到这在哺乳动物中是否也适用(第3章)。与其他哺乳动物一样,不规则的黄鼠传入比一般的传入具有更高的响应增益,尽管有低增益的不规则子集,这些树具有仅由花萼组成的树突末端。我们发现,在龙猫中,规则和不规则的传入都可以具有低或高的SNR,I和Ispike。将响应分解为信号和噪声表明:1)自发活动是对黄鼠的不规则传入比对牛蛙更大的噪声决定因素,表明在牛蛙中。 2)SNR不仅取决于黄鼠的信号或噪声。总之,这两个发现表明,对于黄鼠前庭传入刺激,刺激噪声水平主要由自发放电规律决定,然后信息传输速率可能低或高,这取决于传入的响应增益是否高到足以传递可以补偿的信号水平。噪音水平。将Ispike与对低频(1.6 Hz)正弦刺激的响应增益进行比较,可以将低Ispike不规则输入归类为仅假定的花萼输入。在第4章中,我们应用了信息理论方法和多神经元最优线性解码来测试假说是从前半规管(AC)突出的初级传入神经元可能会为大脑提供有关水平面旋转的大量信息。我们发现,AC传入的信息量与HC传入的信息一样多,而多神经元最优线性解码器在包含AC和HC的不规则传入时效果最佳。这些发现表明,中枢神经系统可能利用AC传入的反应来帮助编码水平面中的头部旋转。,我们对原发前庭传入信息传递特性的研究有望为开始将已知的原发传入异质性整合到现有的前庭功能模型(例如控制系统模型或概率最优贝叶斯估计模型)中提供有益的基础深入了解每个物种中中央前庭回路的组织原理是如何根据其行为学需求量身定制的。

著录项

  • 作者

    Hirsch-Shell, Dylan Justin.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Biology Neuroscience.;Information Technology.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号