首页> 外文学位 >A multifractal subgrid-scale model for the large-eddy simulation of turbulent flows.
【24h】

A multifractal subgrid-scale model for the large-eddy simulation of turbulent flows.

机译:用于湍流大涡模拟的多重分形子网格规模模型。

获取原文
获取原文并翻译 | 示例

摘要

The present work develops a fundamentally new theoretical and numerical approach to modeling the subgrid-scale stresses for the large-eddy simulation (LES) of turbulent flows, which incorporates significant subgrid physics, yet can be implemented readily in the spatial domain. The approach draws on the multifractal structure of the enstrophy field in the inertial-range scales of turbulence to describe the spatial distribution of vorticity within the subgrid field. It is then possible to recast the subgrid-velocity contributions usgsi to the subgrid stresses τij as Biot-Savart integrals over the subgrid-vorticity field, permitting direct calculation of τij. The model can be simplified using central-limit concepts, and at high Reynolds-number, the subgrid-velocity field usgsi reduces to a simple algebraic form based on quantities available from the resolved flow field in an LES calculation. Results from a priori tests are presented indicating good agreement between model and DNS values for τij and subgrid-energy production Psgs in both lower and higher Reynolds-number cases. The work also describes the backscatter limiter, a new method to manage resolved energy and stabilize LES calculations by limiting those stresses contributing to backscatter. The results of actual large-eddy simulations using the multifractal model are then presented, indicating that the multifractal model runs stably at very-high Reynolds-numbers and recovers important characteristics of real turbulence, including the k−5/3 scaling of the energy spectrum E(k), the distributions of the velocity-gradient and fluctuation-stress tensors, as well as the high intermittency seen in real turbulent flows. Finally, the work derives multifractal models for the subgrid-scalar concentrations zsgs in the filtered passive-scalar transport equation and the Reynolds stresses u′iu′ j&d15; in the Reynolds-Averaged Navier-Stokes (RANS) equations.
机译:本工作开发了一种全新的理论和数值方法,用于对湍流的大涡模拟(LES)的亚网格尺度应力进行建模,该方法结合了重要的亚网格物理原理,但可以在空间领域轻松实现。该方法利用湍流惯性范围尺度中的涡旋场的多重分形结构来描述子网格场内涡度的空间分布。然后可以将子网格速度贡献 u sgs i 重铸为子网格应力τ ij 作为子网格涡度字段上的Biot-Savart积分,可以直接计算τ ij 。可以使用中心极限概念来简化模型,并且在高雷诺数下,子网格速度字段 u sgs i 根据LES计算中可解析流场中的可用量将其简化为简单的代数形式。给出了先验测试的结果,表明τ ij 和子电网能源生产 的模型和DNS值之间具有良好的一致性在较低和较高雷诺数情况下, P sgs 。这项工作还介绍了反向散射限制器,它是一种新方法,通过限制那些有助于反向散射的应力来管理分辨能量并稳定LES计算。然后给出了使用多重分形模型进行的实际大涡模拟结果,表明该多重分形模型在很高的雷诺数下稳定运行,并且恢复了真实湍流的重要特征,包括 k E k )的> −5/3 标度,速度梯度和涨落应力张量的分布以及在真实的湍流中观察到较高的间歇性。最后,工作推导了过滤后的被动标量传输中亚网格标量浓度 z sgs 的多重分形模型方程和雷诺应力 u ' i u ' j &d15; 在雷诺平均Navier-Stokes(RANS)方程中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号