首页> 外文学位 >A micromechanical strain gradient theory for instability problems in granular materials.
【24h】

A micromechanical strain gradient theory for instability problems in granular materials.

机译:用于颗粒材料不稳定性问题的微机械应变梯度理论。

获取原文
获取原文并翻译 | 示例

摘要

Material instabilities play an important role in many engineering problems because they trigger zones of highly localized straining, which often act as a precursor to failure. Classical continuum mechanics approach has been proven insufficient to study material instability problems which involve highly localized straining. Instead, an enhanced approach is required to describe strongly nonlinear behavior and local weakness of the material.; In this research, high-gradient constitutive models have been developed to study the instability problems of materials, in particular of granular materials. In a high-gradient model, strain gradient and higher-order stress are incorporated in the constitutive equation as additional variables. Therefore, the high-gradient model is useful in describing highly localized straining.; A strain gradient model is developed using the microstructural approach in elastic range as the basis and starting point of the research. The developed strain gradient model is implemented in the finite element formulation based on a modified variational principle. Several numerical examples are presented and compared with the results of the classical continuum models.; To study material instability, the strain gradient model is extended to inelastic range. The von-Mises, Drucker-Prager and Cam-Clay strain gradient plasticity models have been developed. A simple shear test and a biaxial test are analyzed using the developed strain gradient plasticity model. The results demonstrate that the strain gradient model effectively removes the spurious mesh sensitivity of finite element simulations. The finite element solutions also show that the shear bandwidth is not only a function of material internal length but also of the distribution of weak spots.; Two soil instability problems are analyzed using the strain gradient plasticity model. The results show that the traditional limit equilibrium methods could possibly overestimate the ultimate bearing capacity of the foundation. It is necessary to use the more realistic soil models to evaluate the performance of the foundation.; Finally, a micromechanical strain gradient plasticity model is derived from the mobilization behavior of micro-scale local planes. The model is calibrated based on the experimental data. The model is capable to simulate stress strain curves including: pre-peak strain hardening, post-peak strain softening, dilatancy, critical state. Instability of boundary value problems is analyzed and the results are compared with other strain gradient models.
机译:材料不稳定性在许多工程问题中起着重要作用,因为它们引发了高度局部应变的区域,这些区域通常是破坏的先兆。事实证明,经典连续力学方法不足以研究涉及高度局部应变的材料不稳定性问题。相反,需要一种增强的方法来描述强烈的非线性行为和材料的局部弱点。在这项研究中,已经开发出了高梯度本构模型来研究材料,特别是颗粒材料的不稳定性问题。在高梯度模型中,应变梯度和高阶应力作为附加变量并入本构方程。因此,高梯度模型可用于描述高度局部应变。利用微观结构方法在弹性范围内建立应变梯度模型,作为研究的基础和起点。基于改进的变分原理,在有限元公式中实现了开发的应变梯度模型。给出了几个数值示例,并将它们与经典连续谱模型的结果进行了比较。为了研究材料的不稳定性,将应变梯度模型扩展到非弹性范围。已经开发了von-Mises,Drucker-Prager和Cam-Clay应变梯度可塑性模型。使用开发的应变梯度可塑性模型分析了简单的剪切试验和双轴试验。结果表明,应变梯度模型有效地消除了有限元模拟的寄生网格敏感性。有限元解还表明,剪切带宽不仅是材料内部长度的函数,而且是薄弱点分布的函数。使用应变梯度可塑性模型分析了两个土壤失稳问题。结果表明,传统的极限平衡方法可能会高估基础的极限承载力。有必要使用更现实的土壤模型来评估基础的性能。最后,从微观局部平面的动员行为推导了微机械应变梯度可塑性模型。根据实验数据对模型进行校准。该模型能够模拟应力应变曲线,包括:峰前应变硬化,峰后应变软化,扩张,临界状态。分析了边值问题的不稳定性,并将结果与​​其他应变梯度模型进行了比较。

著录项

  • 作者

    Shi, Qingsong.;

  • 作者单位

    University of Massachusetts Amherst.;

  • 授予单位 University of Massachusetts Amherst.;
  • 学科 Engineering Civil.; Geotechnology.; Applied Mechanics.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 267 p.
  • 总页数 267
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;地质学;应用力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号