首页> 外文学位 >Determining the secondary and tertiary structure of natural and synthetic spider silk.
【24h】

Determining the secondary and tertiary structure of natural and synthetic spider silk.

机译:确定天然和合成蜘蛛丝的二级和三级结构。

获取原文
获取原文并翻译 | 示例

摘要

Throughout evolution spiders have mastered material science as they have developed fibers with an unrivaled combination of strength and elasticity. Although the spider can produce six solid silk fibers and one aqueous silk glue, the major ampullate fiber represents a feat of natural engineering to be explored and unraveled. In addition to major ampullate silk, minor ampullate silk has mechanical properties tailored for its biological function. Both of these mechanically balanced fibers are composites of two proteins, MaSp1 and MaSp2 or MiSp1 and MiSp2 respectively. Ecological differences in species have led to differences in mechanical performance of their respective major ampullate fibers by adjusting the ratio of MaSp1 to MaSp2. There is a strong correlation between the structure and function of the proteins, particularly when considering the precise composition of recognized structural amino acid motifs. Differences in the overall protein composition of the fiber highlight the functional impact of the motifs. The secondary and tertiary structure of some of the individual amino acid domains or motifs has been determined via a variety of biophysical techniques; however, there are many portions of the silk proteins that remain unknown. Solid state Nuclear Magnetic Resonance (ssNMR) has long provided a technical approach to probe the structure of spider silk. Many ssNMR pulse sequences have been utilized to delve into the structure/function relationship of the unknown aspects of spider silk. Despite a wide variety of pulse sequences to probe different chemical environments and molecular interactions, technical limitations imposed by the repetitive nature of spider silk have limited the utility of ssNMR.;Many complex two-dimensional ssNMR pulse sequences require an enrichment of the natural isotopic amino acid abundance and thus unique amino acid interactions for label incorporation. In order to isotopically label previously obscured regions of the major ampullate silk, de novo amino acid metabolism was exploited providing a more basic and comparative understanding of spider metabolic pathways. During the course of this investigation, the rate of amino acid scrambling and isotopic placement was determined using several labeling schemes. Prior to this revelation, simple ssNMR spectra were only able to skim the surface of the proline interactions. Notably, the majority of proline in major ampullate silk is found in the GPGXX motif of MaSp2. An enriched level of label incorporation has allowed a further look into the proline region. Importantly, the chemical shifts of proline are in the same region as elastin suggesting that they both exist in beta-turns.;Not only can the secondary structure of an amino acid residue impact the physical properties but the molecular and chemical environment can effect a similar change. Water has one of the largest effects on silk, imparting the unique physical and molecular property of supercontraction. Understanding the underlying structural basis for such a biologically-relevant physical change is essential to harness the mechanics of these designer fibers. Importantly, supercontraction goes beyond the classic physical bulk mobility of the fiber exemplified by major ampullate silk and also promotes an increased molecular mobility even in the absence of bulk fiber mobility as revealed by ssNMR studies of minor ampullate silk. The gained mobility in both the major and minor ampullate silk correlates to a change in the viscoelastic nature (elastic modulus and the extensibility) of both wetted fibers.;Ultimately, the mechanical and structural properties of designer synthetic mimetics are impacted by (1) the amino acid sequence of the fiber, (2) the molecular and chemical environment of the fiber, and (3) synthetic spinning conditions. Alterations of any or all of these parameters can produce a designer fiber with desired mechanical properties. Synthetic fibers have been produced with the individual major ampullate proteins. A comparison of the mechanical properties and the structure of the synthetics were explored through ssNMR. Synthetic MaSp1 fibers, although they showed many similarities to the natural Nephila clavipes major ampullate fibers, showed distinct mechanical and structural differences based on the formulation of spinning dope, specifically the solvent used. Alternatively, synthetic MaSp2 fibers and lyophilized protein had many more differences when compared to Argiope aurantia silk. Importantly, the absence of beta-sheets suggest an interaction between MaSp1 and MaSp2 in the native fiber.;The culmination of all these studies represents a technical advancement in the field of spider silk research with far reaching consequences for future research on other repetitive structural proteins.
机译:在整个进化过程中,蜘蛛已经掌握了材料科学,因为它们开发了具有无与伦比的强度和弹性的纤维。尽管蜘蛛可以产生六种固体丝纤维和一种水性丝胶,但主要的壶腹纤维却代表着一项自然工程的壮举,值得探索和探索。除了主要的壶腹蚕丝外,次要的壶腹蚕丝还具有根据其生物学功能量身定制的机械性能。这两种机械平衡的纤维都是两种蛋白质的复合物,分别为MaSp1和MaSp2或MiSp1和MiSp2。物种的生态差异通过调整MaSp1与MaSp2的比例,导致其各自的主要壶腹纤维的机械性能差异。蛋白质的结构和功能之间有很强的相关性,特别是考虑到公认的结构氨基酸基序的精确组成时。纤维的总蛋白质组成的差异突出了基序的功能影响。某些氨基酸结构域或基序的二级和三级结构已通过多种生物物理技术确定。然而,丝蛋白的许多部分仍然未知。固态核磁共振(ssNMR)一直为探测蜘蛛丝的结构提供了一种技术方法。许多ssNMR脉冲序列已被用来研究蜘蛛丝未知方面的结构/功能关系。尽管有各种各样的脉冲序列可以探测不同的化学环境和分子相互作用,但是蜘蛛丝的重复性强加了技术限制,限制了ssNMR的应用。;许多复杂的二维ssNMR脉冲序列都需要丰富天然同位素氨基酸丰度,以及独特的氨基酸相互作用,可用于标记掺入。为了同位素标记主要壶腹丝的先前被遮盖的区域,开发了从头氨基酸代谢,提供了对蜘蛛代谢途径的更基本和比较的理解。在此研究过程中,使用几种标记方案确定了氨基酸加扰和同位素放置的速率。在此揭示之前,简单的ssNMR光谱仅能浏览脯氨酸相互作用的表面。值得注意的是,主要壶腹丝中的脯氨酸大部分存在于MaSp2的GPGXX基序中。标签掺入的丰富水平允许进一步研究脯氨酸区域。重要的是,脯氨酸的化学位移与弹性蛋白位于同一区域,表明它们都以β角存在。;不仅氨基酸残基的二级结构会影响物理性质,而且分子和化学环境也会产生相似的影响更改。水对丝绸的影响最大,赋予了超收缩独特的物理和分子特性。了解这种与生物学相关的物理变化的基本结构基础对于利用这些设计纤维的力学至关重要。重要的是,超收缩超越了经典的壶腹丝所代表的经典的物理物理迁移率,而且即使不存在散装纤维的迁移率也能促进分子迁移率的提高,如次要壶腹丝的ssNMR研究所揭示的那样。在主要和次要壶腹丝中获得的流动性与两种湿润纤维的粘弹性(弹性模量和可延展性)的变化有关;最终,设计师合成模拟物的机械和结构性能受到以下因素的影响:(1)纤维的氨基酸序列,(2)纤维的分子和化学环境,以及(3)合成纺丝条件。这些参数中的任何一个或全部的改变都可以生产出具有所需机械性能的设计纤维。已经用单独的主要壶腹蛋白生产了合成纤维。通过ssNMR对合成物的机械性能和结构进行了比较。合成的MaSp1纤维尽管与天然Nephila锁骨主要的壶腹纤维有许多相似之处,但根据纺丝原液的配方(尤其是所用的溶剂),却表现出明显的机械和结构差异。另外,与Argiope aurantia丝相比,合成的MaSp2纤维和冻干蛋白具有更多差异。重要的是,没有β-折叠片表明天然纤维中的MaSp1和MaSp2之间存在相互作用。所有这些研究的高潮代表着蜘蛛丝研究领域的技术进步,对其他重复结构蛋白的未来研究产生了深远的影响。

著录项

  • 作者

    Creager, Melinda S.;

  • 作者单位

    University of Wyoming.;

  • 授予单位 University of Wyoming.;
  • 学科 Biology Molecular.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号