首页> 外文学位 >Chemical and photochemical reactions on mineral oxide surfaces in gaseous and liquid phases: Environmental implications of fate, transport and climatic impacts of mineral dust aerosol.
【24h】

Chemical and photochemical reactions on mineral oxide surfaces in gaseous and liquid phases: Environmental implications of fate, transport and climatic impacts of mineral dust aerosol.

机译:气相和液相中矿物氧化物表面上的化学和光化学反应:矿物粉尘气溶胶的结局,运输和气候影响的环境影响。

获取原文
获取原文并翻译 | 示例

摘要

Mineral dust aerosols emitted from the Earth crust during various natural and anthropogenic processes continuously alter the chemical balance of the atmosphere via heterogeneous processes and thus, impact on the global climate. Understanding of heterogeneous chemistry and photochemistry on mineral dust has become vital to accurately predict the effect of mineral dust loading on the Earth's atmosphere. Here, laboratory measurements are coupled with model studies to understand heterogeneous chemistry and photochemistry in the atmosphere with the specific focus on reactions on mineral oxide surfaces.;Heterogeneous uptake of gas phase HNO3 on well characterized metal oxides, oxyhydroxides and carbonates emphasized binding of nitric acid to these surfaces in different modes including monodentate, bidentate and bridging under dry conditions. It is becoming increasingly clear that the heterogeneous chemistry, including uptake of HNO3, is a function of relative humidity (RH) as water on the surface of these particles can enhance or inhibit its reactivity depending on the reaction. All the studied model systems showed a significant uptake of water with the highest uptake by CaCO 3. Quantitative analysis of water uptake indicated formation of multilayers of water over these reactive surfaces. Under humid conditions, two water solvated nitrate coordination modes were observed that is inner-sphere and outer-sphere, which differ by nitrate proximity to the surface.;Photochemical conversion of nitric acid to gas phase nitrous oxide, nitric oxide and nitrogen dioxide through an adsorbed nitrate intermediate under different atmospherically relevant conditions is shown using transmittance FTIR and XPS analysis. The relative ratio and product yields of these gas phase products change with relative humidity. Photochemistry of adsorbed nitrate on mineral aerosol dust may be influenced by the presence of other distinct gases in the atmosphere making it complicated to understand. This thesis converses formation of active nitrogen, NOx and N2O, and chlorine, ClOx, species in the presence of co-adsorbed trace gases, that could potentially regulate the peak concentration and geographical distribution of atmospheric ozone. Here we report formation of atmospheric N2O, from the photodecomposition of adsorbed nitrate in the presence of co-adsorbed NH3 via an abiotic mechanism that is favorable in the presence of light, relative humidity and a surface. Estimated annual production of N2O over the continental United States is 9.3+0.7/-5.3 Gg N 2O, ∼5% of total U.S. anthropogenic N2O emissions. Not only NH2 but also gaseous HCl react with adsorbed nitrate to activate "inert" N and Cl reservoir species, yielding NOCl, NOx, Cl and Cl2, through adsorbed nitrate under different atmospherically relevant conditions.;Mineral dust aerosol is a major source of bioavailable iron to the ocean with an annual deposition of ∼ 450 Tg of dust into the open ocean waters. In this study, we report enhanced Fe dissolution from nano scale Fe-containing minerals, i.e.alpha-FeOOH, beyond the surface area effects that can be attributed to the presence of more reactive sites on specific crystal planes exposed. We further report with clear evidence that aggregation impacts on dissolution. Proton-promoted dissolution of nanorods is nearly or completely quenched in the aggregated state. Acid type, presence of oxyanions and light are several other key factors responsible for regulating for iron dissolution. The work reported in this thesis provides insight into the heterogeneous chemistry and photochemistry of mineral dust aerosol under different atmospherically relevant conditions.
机译:在各种自然和人为过程中,从地壳中散发出来的矿物粉尘气溶胶通过异质过程不断改变着大气的化学平衡,从而影响了全球气候。对矿物尘埃的异质化学和光化学的理解对于准确预测矿物尘埃负载对地球大气的影响变得至关重要。在这里,实验室测量与模型研究相结合,以了解大气中的异质化学和光化学,特别着重于矿物氧化物表面上的反应;气相HNO3在特征明确的金属氧化物,羟基氧化物和碳酸盐上的异质吸收强调了硝酸的结合这些表面以不同的方式包括在干燥条件下的单齿,双齿和桥接。越来越清楚的是,包括HNO3吸收在内的异质化学是相对湿度(RH)的函数,因为这些颗粒表面的水会根据反应增强或抑制其反应性。所有研究的模型系统都显示出大量的水被CaCO 3吸收。对水吸收的定量分析表明,在这些反应性表面上形成了多层的水。在潮湿条件下,观察到内球和外球有两种水溶剂化的硝酸盐配位模式,它们的不同之处在于硝酸盐与表面的接近程度;硝酸通过光化学转化为气相一氧化二氮,一氧化氮和二氧化氮。使用透射率FTIR和XPS分析显示了在不同的大气相关条件下吸附的硝酸盐中间体。这些气相产物的相对比例和产物产率随相对湿度而变化。矿物气溶胶粉尘上吸附的硝酸盐的光化学性质可能会受到大气中其他独特气体的影响,使其难以理解。在存在共吸附的痕量气体的情况下,本论文逆转了活性氮,NOx和N2O以及氯,ClOx物种的形成,这可能会调节大气臭氧的峰值浓度和地理分布。在这里,我们报告了通过共生的NH3经由非生物机制(在光,相对湿度和表面的存在下是有利的)从硝酸盐的光分解中形成的大气N2O。美国大陆上N2O的估计年产量为9.3 + 0.7 / -5.3 Gg N 2O,约占美国人为N2O总排放量的5%。不仅是NH2,而且气态HCl都会与吸附的硝酸盐发生反应,从而激活“惰性”的N和Cl储集层,在不同的大气相关条件下通过吸附的硝酸盐产生NOCl,NOx,Cl和Cl2。铁进入海洋,每年有约450 Tg的灰尘沉积到开放的海水中。在这项研究中,我们报道了铁从纳米级含铁矿物质即α-FeO​​OH中溶出的增强,超出了表面积效应,这可以归因于在暴露的特定晶体平面上存在更多的反应性位点。我们进一步提供了明确的证据,表明聚集会影响溶出度。质子促进的纳米棒溶解在聚集状态下几乎或完全淬灭。酸类型,氧阴离子和光的存在是调节铁溶解的其他几个关键因素。本论文报道的工作提供了在不同大气相关条件下矿物粉尘气溶胶的非均相化学和光化学的见解。

著录项

  • 作者单位

    The University of Iowa.;

  • 授予单位 The University of Iowa.;
  • 学科 Chemistry Inorganic.;Chemistry Physical.;Geochemistry.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 340 p.
  • 总页数 340
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:45:03

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号