首页> 外文学位 >Time-lapse seismic monitoring of subsurface fluid flow.
【24h】

Time-lapse seismic monitoring of subsurface fluid flow.

机译:地下流体流动的时移地震监测。

获取原文
获取原文并翻译 | 示例

摘要

Time-lapse seismic monitoring repeats 3D seismic imaging over a reservoir to map fluid movements in a reservoir. During hydrocarbon production, the fluid saturation, pressure, and temperature of a reservoir change, thereby altering the acoustic properties of the reservoir. Time-lapse seismic analysis can illuminate these dynamic changes of reservoir properties, and therefore has strong potential for improving reservoir management. However, the response of a reservoir depends on many parameters and can be difficult to understand and predict.; Numerical modeling results integrating streamline fluid flow simulation, rock physics, and ray-Born seismic modeling address some of these problems. Calculations show that the sensitivity of amplitude changes to porosity depends on the type of sediment comprising the reservoir. For consolidated rock, high-porosity models show larger amplitude changes than low porosity models. However, in an unconsolidated formation, there is less consistent correlation between amplitude and porosity. The rapid time-lapse modeling schemes also allow statistical analysis of the uncertainty in seismic response associated with poorly known values of reservoir parameters such as permeability and dry bulk modulus. Results show that for permeability, the maximum uncertainties in time-lapse seismic signals occur at the water front, where saturation is most variable. For the dry bulk-modulus, the uncertainty is greatest near the injection well, where the maximum saturation changes occur.; Time-lapse seismic methods can also be applied to monitor CO2 sequestration. Simulations show that since the acoustic properties of CO 2 are very different from those of hydrocarbons and water, it is possible to image CO2 saturation using seismic monitoring. Furthermore, amplitude changes after supercritical fluid CO2 injection are larger than liquid CO2 injection.; Two seismic surveys over Teal South Field, Eugene Island, Gulf of Mexico, were acquired at different times, and the numerical models provide important insights to understand changes in the reservoir. 4D seismic differences after cross-equalization show that amplitude dimming occurs in the northeast and brightening occurs in the southwest part of the field. Our forward model, which integrates production data, petrophysicals, and seismic wave propagation simulation, shows that the amplitude dimming and brightening can be explained by pore pressure drops and gas invasion, respectively.
机译:延时地震监测在储层上重复进行3D地震成像,以绘制储层中的流体运动图。在烃生产期间,流体饱和度,储层的压力和温度发生变化,从而改变了储层的声学特性。时移地震分析可以阐明油藏属性的这些动态变化,因此具有改善油藏管理的强大潜力。但是,储层的响应取决于许多参数,可能难以理解和预测。结合流线型流体流动模拟,岩石物理和ray-Born地震建模的数值建模结果解决了其中一些问题。计算表明,振幅变化对孔隙度的敏感性取决于构成储层的沉积物类型。对于固结岩石,高孔隙度模型比低孔隙度模型显示出更大的振幅变化。但是,在未固结的地层中,振幅和孔隙度之间的一致性较低。快速时移建模方案还允许对与储层参数(例如渗透率和干体积模量)的未知值相关的地震响应的不确定性进行统计分析。结果表明,对于渗透率,时移地震信号的最大不确定性出现在水位,饱和度变化最大。对于干体积模量,在最大饱和度发生变化的注入井附近,不确定性最大。延时地震方法也可以用于监测CO 2 的固存。仿真表明,由于CO 2 的声学特性与碳氢化合物和水的声学特性有很大差异,因此可以使用地震监测对CO 2 饱和度成像。此外,超临界流体CO 2 注入后的振幅变化大于液态CO 2 注入。在不同时间进行了两次在墨西哥湾尤金岛蒂尔南油田的地震勘探,数值模型为了解储层的变化提供了重要的见解。交叉均衡后的4D地震差异表明,振幅变暗发生在东北,而亮度变亮发生在油田的西南。我们的前向模型集成了生产数据,岩石物理和地震波传播模拟,结果表明振幅变暗和变亮可以分别由孔隙压降和气体侵入来解释。

著录项

  • 作者

    Yuh, Sung H.;

  • 作者单位

    Texas A&M University.;

  • 授予单位 Texas A&M University.;
  • 学科 Geophysics.; Engineering Petroleum.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 126 p.
  • 总页数 126
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地球物理学;石油、天然气工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号