首页> 外文学位 >Atmospheric aerosol optical property retrieval with scanning polarimeters.
【24h】

Atmospheric aerosol optical property retrieval with scanning polarimeters.

机译:用扫描旋光仪检索大气气溶胶光学性质。

获取原文
获取原文并翻译 | 示例

摘要

The radiative energy balance of the Earth is controlled by aerosols, clouds and gases, which scatter and absorb incident solar radiation and emitted infra-red radiation. Climate models simulate this process, along with the dynamical energy redistribution of the atmosphere and oceans. In the last decade, climate models have become increasingly accurate as they include complex processes in a more physical manner. However, the climatic effect of one component, atmospheric aerosols, continues to remain highly uncertain. Aerosols are short lived airborne particulate matter of both natural and anthropogenic (human) origin that have complex interactions with atmospheric radiation, clouds, and chemistry. A complete understanding of aerosols is limited by the inability of satellite remote sensing instruments to consistently measure all of the aerosol optical parameters that are required to define their radiative effects. This is mainly because the retrieval of these parameters is often underdetermined, and because the aerosol optical signal is difficult to separate from other signals, such as surface reflection. However, a new class of instruments, called scanning polarimeters, have the potential to vastly improve orbital retrieval of aerosol optical properties. These instruments use multiple angles, spectral bands and polarization states, to provide measurements with maximized information content that can differentiate aerosols from other scatterers.;This research is an investigation of the aerosol retrieving potential of scanning polarimeters that uses data collected by the Research Scanning Polarimeter (RSP) during several field campaigns. The RSP is the airborne prototype of the Aerosol Polarimetry Sensor (APS), soon to be launched into orbit as part of the NASA Glory orbital mission. Field campaign data have already been used to verify the capability of RSP (and APS) to retrieve aerosol properties in cloudless areas over the ocean and land surfaces. Here I have continued that work, and investigate the potential for aerosol property retrieval in more complicated scenes, such as aerosols lofted above clouds or extremely large aerosol loads near forest fires. As part of this, I constructed an automated aerosol and cloud retrieval technique that combines a first-principles based atmospheric radiative transfer model with the Levenberg-Marquardt nonlinear optimization approach. This method retrieves optical parameters and quantifies their uncertainties, which provide an assessment of optimization success. The software is very flexible, and was also used to determine the sensitivity of the RSP measurements to various parameters that determine atmospheric radiative transfer.;The retrieval software is applied to investigate two scenarios. The first analysis is of data collected near an extremely optically thick and weakly absorbing forest fire smoke (aerosol) plume in northern Canada. This well characterized plume is used to test the importance of assumptions about aerosol vertical distribution during retrieval. It also allows for an evaluation of simple approaches to merging aerosol vertical profile data from remote sensing instruments. A second study is performed for aerosols suspended above clouds, evaluating the theoretical feasibility of these observations, and then applying the method to data from a particular field campaign. This scene involved aerosols originating in central Mexico suspended over low altitude marine stratocumulus clouds in the Gulf of Mexico. These studies will guide both operational APS algorithms and the design of future aerosol remote sensing instruments.;An additional component of this thesis is an examination of the capability of RSP and APS instruments to estimate the surface bidirectional reflectance distribution function (BRDF) across the solar spectrum, and therefore constrain the surface radiation balance. The retrieved BRDF can also be used to validate similar products from other instruments that will have higher spatial resolution and global coverage than APS, but poorer angular sampling, such as the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. The BRDF and broadband albedo are estimated using RSP data collected in central Oklahoma, and a good agreement is found with both direct surface measurements and MODIS remote sensing observations.
机译:地球的辐射能量平衡由气溶胶,云和气体控制,这些气溶胶会散射和吸收入射的太阳辐射以及发出的红外辐射。气候模型模拟了这一过程,以及大气和海洋的动态能量重新分配。在过去的十年中,气候模型变得越来越准确,因为它们以更物理的方式包含了复杂的过程。然而,一种成分,大气气溶胶的气候影响仍然高度不确定。气溶胶是天然和人为(人类)来源的短寿命空气传播颗粒物,与大气辐射,云和化学物质具有复杂的相互作用。对气溶胶的完整理解受到卫星遥感仪器无法始终如一地测量定义其辐射效应所需的所有气溶胶光学参数的限制。这主要是因为常常无法确定这些参数的获取,并且因为气溶胶光学信号很难与其他信号(例如表面反射)分离。但是,一类称为扫描偏振计的新型仪器具有极大改善气溶胶光学特性的轨道检索的潜力。这些仪器使用多个角度,光谱带和偏振态,以提供具有最大信息量的测量值,从而可以将气溶胶与其他散射体区分开来。 (RSP)。 RSP是气溶胶极化仪(APS)的机载原型,不久将作为NASA Glory轨道飞行任务的一部分发射入轨道。野战活动数据已用于验证RSP(和APS)在海洋和陆地表面无云区域中检索气溶胶特性的能力。在这里,我继续进行这项工作,并研究在更复杂的场景中进行气溶胶特性检索的潜力,例如,高高悬垂在云层之上的气溶胶或森林大火附近的超大气溶胶负荷。作为其中的一部分,我构建了一种自动的气溶胶和云提取技术,该技术将基于第一原理的大气辐射传输模型与Levenberg-Marquardt非线性优化方法相结合。该方法检索光学参数并量化其不确定性,从而提供优化成功的评估。该软件非常灵活,还用于确定RSP测量对确定大气辐射传递的各种参数的敏感性。该检索软件用于研究两种情况。第一项分析是在加拿大北部一个光学极厚且吸收率极低的森林火烟(气溶胶)羽流附近收集的数据。这种特征明确的羽状流用于测试取回过程中有关气溶胶垂直分布的假设的重要性。它还可以评估合并遥感仪器气溶胶垂直剖面数据的简单方法。对悬浮在云层上方的气溶胶进行了第二项研究,评估了这些观测值的理论可行性,然后将该方法应用于来自特定野战的数据。该场景涉及起源于墨西哥中部的气溶胶,悬浮在墨西哥湾的低空海洋平流层云之上。这些研究将为可操作的APS算法和未来的气溶胶遥感仪器的设计提供指导。;本论文的另一部分是研究RSP和APS仪器估算整个太阳能表面的双向反射率分布函数(BRDF)的能力。光谱,因此限制了表面辐射平衡。检索到的BRDF还可以用于验证其他仪器的相似产品,这些仪器比APS具有更高的空间分辨率和全球覆盖范围,但角度采样效果较差,例如NASA中分辨率成像光谱仪(MODIS)。利用在俄克拉荷马州中部收集的RSP数据估算了BRDF和宽带反照率,并且与直接表面​​测量和MODIS遥感观测都发现了很好的一致性。

著录项

  • 作者

    Knobelspiesse, Kirk D.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Atmospheric Sciences.;Physics Optics.;Remote Sensing.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 223 p.
  • 总页数 223
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号