首页> 外文学位 >Effects of biophysical and biochemical cues on human corneal epithelial cell behavior.
【24h】

Effects of biophysical and biochemical cues on human corneal epithelial cell behavior.

机译:生化和生化线索对人角膜上皮细胞行为的影响。

获取原文
获取原文并翻译 | 示例

摘要

Recent advances in the design of biomaterials aim at mimicking the natural biophysical and biochemical components found in a tissue's extracellular environment (ECM). Of particular interest in this work is mimicking the specialized ECM of the human corneal epithelium called the basement membrane (BM) and understanding how corneal epithelial cells (HCECs) respond to biophysical and biochemical cues. To this end, well defined topographic features with dimension of the BM (20 to 200 nm) were fabricated to support controlled cell interactions with biochemical motifs (e.g., adhesive peptide ligands) found in the BM. Here, features of 30 to 70 nm that represent the smallest features found in the BM were used to demonstrate that the smallest features that HCECs can recognize are 30 and 45 nm, depending on the soluble environment. In addition, HCECs demonstrate contact guidance on the smallest BM features (30 to 70 nm) and on the largest BM features (200 nm), but differs from contact guidance on micron-scale features, suggesting that BM scale topography scale is an influential factor in regulating HCEC behavior. To study the simultaneous presentation of biophysical and biochemical cues, topographic features are coated with thin films using a layer-by-layer deposition of covalently reacting polymers, poly(ethylene imine) and poly(2-vinyl-4,4-dimethylazlactone (PEI/PVDMA). The films are functionalized with the bioactive peptide argenine-glycine-aspartic acid (RGD) to control cell-substrate interactions. We demonstrate that PEI/PVDMA films can be functionalized with monotonically increasing densities of ROD to control HCEC attachment and proliferation. In addition PEI/PVDMA films functionalized with RGD were used to demonstrate that HCEC response to topographic cues is dependent on the scale of the topography, the surface chemical composition and the soluble environment. Results from these studies will advance the understanding of how BM-relevant biophysical and biochemical cues regulate HCEC behaviors in order to design better synthetic implants and in vitro cell culture environments.
机译:生物材料设计的最新进展旨在模仿组织细胞外环境(ECM)中发现的天然生物物理和生化成分。在这项工作中,特别有趣的是模仿人类角膜上皮的专门ECM,称为基底膜(BM),并了解角膜上皮细胞(HCEC)如何响应生物物理和生化线索。为此,制造了具有良好尺寸的BM尺寸(20至200nm)的地形特征,以支持与在BM中发现的生化基序(例如,粘附肽配体)的受控细胞相互作用。在这里,代表BM中最小特征的30到70 nm的特征被用来证明HCEC可以识别的最小特征是30和45 nm,这取决于可溶环境。此外,HCEC在最小的BM特征(30至70 nm)和最大的BM特征(200 nm)上显示出接触指导,但与微米尺度的特征上的接触指导不同,这表明BM尺度的地形尺度是一个影响因素。调节HCEC行为。为了研究生物物理和生化线索的同时呈现,使用共价反应的聚合物,聚(亚乙基亚胺)和聚(2-乙烯基-4,4-二甲基az内酯(PEI)的逐层沉积,用薄膜覆盖地形特征/ PVDMA)。薄膜被生物活性肽精氨酸-甘氨酸-天冬氨酸(RGD)功能化以控制细胞-底物的相互作用。我们证明PEI / PVDMA薄膜可以通过ROD单调增加密度来功能化以控制HCEC附着和增殖。 。此外,还使用RGD功能化的PEI / PVDMA膜来证明HCEC对地形线索的响应取决于地形的规模,表面化学成分和可溶环境,这些研究的结果将有助于人们进一步了解BM-相关的生物物理和生化线索可调节HCEC行为,以设计更好的合成植入物和体外细胞培养环境。

著录项

  • 作者

    Tocce, Elizabeth J.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Engineering Biomedical.;Engineering Materials Science.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 220 p.
  • 总页数 220
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:45:05

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号