首页> 外文学位 >Preventing Pathophysiological Adaptation in Unloaded Skeletal Muscle Using Passive and Active Stretch.
【24h】

Preventing Pathophysiological Adaptation in Unloaded Skeletal Muscle Using Passive and Active Stretch.

机译:使用被动和主动拉伸预防骨骼肌负重的病理生理适应。

获取原文
获取原文并翻译 | 示例

摘要

Skeletal muscle is a remarkably adaptive tissue able to optimize performance based on the demands of the organism. Adaptation involves regulating force output (sarcomeres in parallel), structural integrity (connective tissues, mysiums, tendons), endurance (fiber type, mitochondrial abundance), contractile velocity (actin filament density within the myofibril, myosin type), and length (sarcomeres in series). Of these parameters, length regulation is least well understood. To model chronic muscle unloading, which induces shortening maladaptation, a rat soleus tenotomy model was developed in which the distal tendon was cut. Stretch was applied through a ligature sutured to the distal tendon stump. Stretch is a time tested exercise thought to increase muscle length and joint flexibility and prevent injury; however, the efficacy of stretch on the regulation of muscle length is controversial. Central core breakdown of the contractile elements within slow muscle fibers appears by 4 d post tenotomy and provided a morphological marker for muscles undergoing shortening adaptation. By day 7 post-tenotomy, 70% of slow fibers had central cores. Solei passively stretched 20 min daily exhibited 50% fewer slow fibers with central cores; however, daily passive stretch did not prevent the shortening adaptation of the muscle fibers. Tenotomized muscle had 68% of the sham control number of sarcomeres per mm of muscle fiber. Passive stretch did not prevent sarcomere loss. Isometric muscle contraction was added to daily stretch via direct electrical stimulation of soleus. Solei stretched and stimulated daily had significantly more sarcomeres per mm of muscle than those with tenotomy alone or daily passive stretch. Stretch+stimulation is necessary to prevent shortening adaptation. Biomarkers known to be activated during exercise (Akt, p70S6K) and/or stretch (p38 MAPK, ERK) and linked to increased sarcomeric protein transcription and translation were analyzed for phosphorylation activation when the soleus was 1) electrically stimulated in a shortened position (plantarflexed), 2) stretched passively to the optimal muscle length (LO) (dorsiflexed), 3) stretched to LO then stimulated, 4) stretched passively 25% beyond LO, and 5) stretched 25% beyond LO then stimulated. Neither passive stretch nor stretch+contraction at any position resulted in the phosphorylation of Akt at T308, its primary activation site. Passive stretch of the soleus to LO (maximum physiological dorsiflexion) produced no activation of any markers. Stimulation at all positions significantly activated p70S6K at T389 and T421/S424, p38 MAPK, and ERK1/2. Passive stretch at LO+25% activated Akt at S473, p70S6K at T389 and T421/S424, p38 MAPK, and ERK 1/2. Stimulation at LO+25% significantly increased all biomarkers, including both Akt sites. The phosphorylation of S473 occurred at a length greater than the in vivo working muscle range. Muscles maladapted with LO near the midrange of motion, and those working across two joints would be expected to exhibit this unique stretch signaling. The proposed mechanism for sarcomere addition in contracting muscle is calcium release and signaling activation, although increased tension cannot be ruled out. Passive stretch beyond LO may open stretch-activated calcium channels and increase cytoplasmic calcium to activate calcium-dependent pathways. The identification of the phosphorylation of Akt S473 as a length-dependent biomarker has provided a first step in identifying a length-sensitive signaling mechanism of sarcomere number regulation.
机译:骨骼肌是一种非常适应性的组织,能够根据生物体的需求优化性能。适应包括调节力输出(平行的肉瘤),结构完整性(结缔组织,肌腱,肌腱),耐力(纤维型,线粒体丰度),收缩速度(肌纤维中肌动蛋白丝密度,肌球蛋白型)和长度(肌瘤中的肌瘤)。系列)。在这些参数中,对长度调节的了解最少。为了模拟引起缩短的适应不良的慢性肌肉卸载,开发了大鼠比目鱼腱切开术模型,其中切断了远端腱。通过绑扎到腱远端的结扎带进行拉伸。伸展运动是一项经过时间检验的运动,被认为可以增加肌肉长度和关节柔韧性并防止受伤;但是,拉伸对调节肌肉长度的功效尚存争议。慢肌纤维内收缩元件的中央核心分解在切开后4 d出现,并为经历缩短适应的肌肉提供了形态学标记。截骨后第7天,有70%的慢纤维具有中央核心。每天进行20分钟的被动拉伸的Solei的中央纤维慢纤维减少了50%。但是,每天的被动拉伸并不能阻止肌肉纤维的适应性缩短。切成薄片的肌肉每毫米肌纤维具有68%的假性对照肉瘤。被动拉伸不能预防肌节损失。通过比目鱼的直接电刺激将等距肌肉收缩添加到日常拉伸中。每天进行拉伸和刺激的Solei肌肉每毫米肌肉的肉瘤明显多于单独进行腱切断或每天被动拉伸的肌肉。伸展+刺激是必要的,以防止适应时间缩短。当比目鱼肌为1)以较短的位置电刺激(足底弯曲)时,分析了已知在运动(Akt,p70S6K)和/或伸展(p38 MAPK,ERK)和/或与肌节蛋白转录和翻译增加相关联的生物标记的磷酸化激活。 ),2)被动伸展至最佳肌肉长度(LO)(背屈),3)伸展至LO然后受刺激,4)被动伸展超过LO 25%,5)伸展超出LO 25%然后受刺激。被动拉伸或拉伸+收缩在任何位置都不会导致Akt在其主要激活位点T308磷酸化。比目鱼被动拉伸至LO(最大生理背屈)不会激活任何标记。在所有位置进行刺激都会显着激活T389和T421 / S424处的p70S6K,p38 MAPK和ERK1 / 2。 LO + 25%处的被动拉伸在S473处激活Akt,在T389和T421 / S424处激活p70S6K,p38 MAPK和ERK 1/2。 LO + 25%的刺激显着增加了所有生物标志物,包括两个Akt位点。 S473的磷酸化长度大于体内工作肌肉范围。肌肉在运动中段附近出现LO不适,并且在两个关节之间工作的肌肉会表现出这种独特的拉伸信号。尽管不能排除增加的张力,但在收缩肌肉中添加肌节的建议机制是钙释放和信号激活。超出LO的被动拉伸可能会打开拉伸激活的钙通道,并增加细胞质钙以激活钙依赖性途径。 Akt S473磷酸化作为长度依赖性生物标志物的鉴定为鉴定肌节数调控的长度敏感性信号传导机制提供了第一步。

著录项

  • 作者

    Van Dyke, Jonathan M.;

  • 作者单位

    The Medical College of Wisconsin.;

  • 授予单位 The Medical College of Wisconsin.;
  • 学科 Cellular biology.;Physical therapy.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 113 p.
  • 总页数 113
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 高分子化学(高聚物);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号