首页> 外文学位 >The scope and limitations of the Diol-to-Alkene Reaction catalyzed by MTO and its corresponding mechanism.
【24h】

The scope and limitations of the Diol-to-Alkene Reaction catalyzed by MTO and its corresponding mechanism.

机译:MTO催化的二醇与烯烃反应的范围和局限性及其机理。

获取原文
获取原文并翻译 | 示例

摘要

Oxidation of olefins to diols and epoxides using high valent metal oxo complexes has been known for decades; however, the corresponding deoxydehydration of diols and deoxygenations of epoxides to alkenes is relatively an unexplored reaction. This Diol-to-Alkene Reaction (DARe) could have significant value for use with biological compounds, in that it could be utilized in transforming low energy density biomass into a fuel source or into Highly Valuable Organics (HVO). Methyltrioxorhenium (MTO) has been shown to be a highly versatile catalyst, able to catalyze the epoxidation of olefins, the polymerization of olefins, and, more recently, the reduction of epoxides and diols to alkenes with a variety of reducing agents.;The objective of my research is to examine the scope of the DARe catalyzed by MTO using model epoxide and diol compounds under varying conditions of temperature, time, and amount of H2. MTO catalyzes the reduction of 2, 3-dimethylepoxybutane, pinacol, trans-2-epoxy-1-hexanol, and trans-3-epoxy-1-hexanol. However, it was highly inefficient and yielded a large amount of mass loss. MTO catalyzed a highly interesting reaction with 1, 2, 3-butanetriol and 1, 2, 6-hexanetriol to form a mixture of alcohols and cyclic ether products. It was also discovered that in systems like hydrobenzoin and cyclohexane diol, the starting material can act as the reductant to produce a mixture of olefinic and ketonic products. Overall, molecular hydrogen is not a good reductant for use with DARe.;Different combinations of the MTO/Pd/C were also investigated for deoxydehydration of diols. The products were always hydrocarbons and alcohols rather than alkenes. It is believed that the Pd/C component of the heterogeneous catalyst is responsible for the subsequent hydrogenation of the initial olefin product. MTO/Pd/C yielded less conversion of starting material, but it prevented charring of substrates as well as the cyclization of triols to form ethers. In systems more complex than linear hydrocarbons, the reactions cleanly yielded large quantities of hydrocarbons and alcohols in comparison to MTO alone.;The mechanism of DARe was explored by analyzing the products formed by isomerically pure chiral diols upon reacting with MTO under differing reductants. (R, R)-(+)-hydrobenzoin and (S, S)-(-)-hydrobenzoin were reacted with MTO under an excess of molecular hydrogen and upon analysis of the products, the trans-stilbene isomer was observed as the major product. However, reaction with meso-hydrobenzoin yields a mixture of cis-stilbene and trans-stilbene products. This suggests that the diols form a diolate adduct that can undergo a competing SN2 reaction with water to cause isomerization of products. When using alcohols as reductants, there is an increase in yield of the stereospecific alkene. A mechanism for the DARe using alcohols and hydrogen was proposed involving a hydride transfer to the oxo group on a MTO-diolate, followed by a proton transfer to the alkoxy oxygen. The resulting bis-hyroxy MTO-diolate complex will then undergo dehydration to form a MDO-diolate complex observed in the work of Nicholas et al.;Finally, the kinetic resolution of a racemic mixture of chiral diols was determined by incomplete reaction with MTO. A racemic mixture of R, R and S, S-hydrobenzoin was reacted with MTO, and the reaction was stopped before completion. After separation and analysis of the products, it was determined that MTO had no kinetic selectivity between the diastereomers of chiral diols.
机译:使用高价金属氧代配合物将烯烃氧化为二醇和环氧化物已有数十年的历史了;然而,二醇的相应脱氧脱水和环氧化物的脱氧至烯烃的还原是相对未开发的反应。这种二醇与烯烃的反应(DARe)对于与生物化合物一起使用可能具有重要的价值,因为它可以用于将低能量密度的生物质转化为燃料或高价有机物(HVO)。甲基三氧or(MTO)已被证明是一种用途广泛的催化剂,能够催化烯烃的环氧化,烯烃的聚合反应,最近还可以通过多种还原剂将环氧化合物和二醇还原为烯烃。我的研究目的是研究在不同的温度,时间和氢气量条件下,使用模型环氧化合物和二醇化合物,由MTO催化的DARe的范围。 MTO催化还原2、3-二甲基环氧丁烷,频哪醇,反式-2-环氧-1-己醇和反式3-环氧-1-己醇。然而,它效率极低并且产生大量的质量损失。 MTO催化了与1,2,3-丁三醇和1,2,6-己三醇形成非常有趣的反应,形成醇和环醚产物的混合物。还发现在诸如氢安息香和环己二醇的体系中,起始原料可以充当还原剂以产生烯烃和酮产物的混合物。总体而言,分子氢不是与DARe一起使用的良好还原剂。;还研究了MTO / Pd / C的不同组合对二醇的脱氧脱水作用。产品始终是烃和醇,而不是烯烃。据信,非均相催化剂的Pd / C组分负责初始烯烃产物的后续氢化。 MTO / Pd / C产生的原料转化率较低,但它会阻止底物焦化以及三醇环化形成醚。在比线性烃更复杂的系统中,与单独的MTO相比,该反应可干净地产生大量烃和醇。通过分析异构体纯手性二醇在不同还原剂下与MTO反应生成的产物,探索了DARe的机理。 (R,R)-(+)-氢安息香和(S,S)-(-)-氢安息香在过量的分子氢下与MTO反应,分析产物时,以反式二苯乙烯为主要成分产品。但是,与中氢安息香反应生成顺式-sti和反式-sti的混合物。这表明,二醇形成了可以与水进行竞争性SN2反应以引起产物异构化的二醇酯加合物。当使用醇作为还原剂时,立体特异性烯烃的产率增加。提出了使用醇和氢进行DARe的机理,该机理涉及将氢化物转移至MTO-二醇酸酯上的羰基,然后将质子转移至烷氧基氧。然后,在Nicholas等人的工作中观察到,生成的双羟基MTO-二醇酯络合物将脱水形成MDO-二醇酯络合物;最后,通过与MTO的不完全反应来确定手性二醇的外消旋混合物的动力学拆分。使R,R和S,S-氢安息香素的外消旋混合物与MTO反应,并在完成之前停止反应。在分离和分析产物之后,确定MTO在手性二醇的非对映异构体之间没有动力学选择性。

著录项

  • 作者

    Evans, Andrew James.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Chemistry Inorganic.;Chemistry Organic.
  • 学位 M.S.
  • 年度 2011
  • 页码 93 p.
  • 总页数 93
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号