首页> 外文学位 >Environmentally benign synthesis and application of some spinel ferrite nanoparticles.
【24h】

Environmentally benign synthesis and application of some spinel ferrite nanoparticles.

机译:尖晶石型铁氧体纳米粒子的环境友好合成与应用。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis, the commercial viability of the aminolytic synthesis method is explored through robustness, versatility, and waste reduction studies. Since the development of a versatile, inexpensive, environmentally compatible, and large scale synthesis method for spinel ferrites nanoparticles has been pursued for years, we report the preparation of simplistic metal precursors and the development of a synthetic approach that could be used to prepare a variety of pure and doped spinel ferrites via the aminolytic reaction of metal carboxylates in a mixture of oleylamine and noncoordinating solvent. The magnetic properties of the nanoparticles are studied by a variety of analytical techniques; these properties also show the effect of surface anisotropy for less than 10 nm particles. In turn, the aminolytic reaction is proven to be an inexpensive and versatile synthetic route for manganese ferrites and can be extended to the rest of the spinel ferrite family.;With a consideration towards potential applications, the reaction is tested with a variety of dopants in an effort to correlate atomic arrangements with physical properties. Magnetic nanoparticles are being increasingly incorporated into sensing technology. Magnetostrictive properties of oxide materials are particularly useful in sensing changes in operating systems due to their good response and chemical robustness. The magnetic properties and responses of the spinel ferrites system are greatly influenced by quantum couplings of the magnetic ions. Thus understanding the couplings between these ions allows for manipulation of the desired magnetic properties. Manganese doping in the cobalt ferrite systems allows for the investigation of the effects of orbital momentum quantum coupling by exchanging a metal ion with high orbital momentum contribution, Co2+, with a metal ion with no orbital momentum contribution, Mn2+.;The last test of the versatile and robustness of the aminolytic methods is the synthesis of a series of manganese ferrites dope with chromium. These ferrites show increasing magnetic frustrated responses. This doping allows for the investigation of the effects of orbital momentum quantum coupling by exchanging a metal ion with high orbital momentum contribution, Fe 3+, with a metal ion with no orbital momentum contribution, Cr 3+. Low chromium concentrations strengthen the L-S couplings due to the unquenched angular orbital momentum. High chromium concentration weakens the couplings between the A and B sites which results in the decreasing in the overall magnetic moment by destroying the magnetic arrangement. Chromium coupling on similar sites is very strong and at x=1 result in a disorder state. At higher concentrations, x=2, magnetic spins start canting resulting from the loss of antiparallel alignment that defines the spinel ferrite magnetic system. In our series at the highest doping concentration, there is a dramatic shift in magnetic properties.;Finally, one environmental conscious application, desalination, is explored in this thesis through the use of aminolytic particles, iron oxides. There are many forms of iron oxides and most of these structures are used in arsenic removal techniques. The iron oxide is formed in-situ by adding a non-oxide iron source to water. The exact nature of the arsenic binding and the effect of impurities on binding efficiency are not well known. Synthesizing well characterized iron oxides will afford better understanding of the arsenic surface binding. Better understanding of the binding affinity for arsenic is necessary for the incorporation of iron oxides into the best available technologies (BATs). Several nanometer sized samples of goethite (alpha-FeO(OH)), maghemite (gamma- Fe2O3), magnetite (Fe3O 4), and hematite (alpha-Fe2O3) were synthesized and characterized using XRD, SQUID, PAS-IR, EDS, and TEM.;Our research, along with most of the literature, indicates that the hematite phase has the highest arsenic removal affinity of the iron oxide adsorbent class. In trying to harness this adsorption potential merged with the magnetic control seen in spinel ferrites, we have synthesized core-shell Iron Oxides Cobalt Ferrites. This was done via the aminolytic method using a previously synthesized CoFe2O4 core which was reacted with iron oxide. Both samples, hematite and maghemite core-shell particles, were exposed to various concentration of arsenite and maghemite core-shell particles were found to have the higher removal affinity. This results from the difference in size between the core-shell nanoparticles with the maghemite derivative being 8 nm and the hematite derivative, 20 nm. (Abstract shortened by UMI.).
机译:本文通过鲁棒性,多功能性和减少废物的研究来探索氨基分解合成方法的商业可行性。由于人们一直在寻求开发一种通用,廉价,环保且大规模的尖晶石型铁氧体纳米粒子合成方法,因此我们报告了简单金属前体的制备方法以及可用于制备各种金属的合成方法的开发。通过在油胺和非配位溶剂的混合物中金属羧酸盐的氨解反应制备纯净和掺杂的尖晶石铁氧体。通过多种分析技术研究了纳米粒子的磁性。这些特性还显示了小于10 nm粒子的表面各向异性的影响。反过来,已证明氨解反应是锰铁氧体的一种廉价且通用的合成途径,并且可以扩展到尖晶石铁氧体家族的其余部分。考虑到潜在的应用,该反应在多种掺杂剂中进行了测试。努力使原子排列与物理性质相关联。磁性纳米颗粒越来越多地并入传感技术。氧化物材料的磁致伸缩特性因其良好的响应性和化学稳定性而特别适用于感测操作系统的变化。尖晶石铁氧体系统的磁性和响应受磁性离子的量子耦合极大地影响。因此,了解这些离子之间的耦合可以操纵所需的磁性。钴铁氧体系统中的锰掺杂可通过将具有高轨道动量贡献的金属离子Co2 +与没有轨道动量贡献的金属离子Mn2 +交换来研究轨道动量量子耦合的影响。氨解方法的通用性和鲁棒性是一系列掺杂铬的锰铁氧体的合成。这些铁氧体显示出不断增加的磁阻响应。这种掺杂允许通过将具有高轨道动量贡献的金属离子Fe 3+与没有轨道动量贡献的金属离子Cr 3+交换来研究轨道动量量子耦合的影响。低铬浓度由于未淬灭的角轨道动量而增强了L-S耦合。高铬浓度会削弱A和B位点之间的耦合,从而通过破坏磁性排列而导致整体磁矩降低。铬在相似位点的耦合非常强,并且在x = 1时会导致无序状态。在更高的浓度下(x = 2),由于定义了尖晶石铁氧体磁系统的反平行对准的损失,磁自旋开始倾斜。在我们的最高掺杂浓度系列中,磁性能发生了巨大变化。最后,本文通过使用氨解性颗粒(氧化铁)探索了一种具有环境意识的应用,即脱盐。氧化铁的形式很多,其中大多数结构都用于除砷技术。通过向水中添加非氧化物铁源就地形成氧化铁。砷结合的确切性质以及杂质对结合效率的影响尚不清楚。合成特征明确的氧化铁将提供对砷表面结合的更好理解。为了将氧化铁结合到最佳可用技术(BAT)中,必须更好地了解砷的结合亲和力。合成并使用XRD,SQUID,PAS-IR,EDS,和我们的研究以及大多数文献表明,赤铁矿相具有氧化铁吸附剂类别中最高的砷去除亲和力。为了利用这种吸附势与尖晶石型铁氧体中的磁控制相结合,我们合成了核-壳型氧化铁钴铁氧体。这是通过使用先前合成的CoFe2O4核与氧化铁反应的氨解法完成的。两种样品(赤铁矿和磁赤铁矿核-壳颗粒)都暴露于不同浓度的亚砷酸盐,并且发现磁赤铁矿核-壳颗粒具有更高的去除亲和力。这是由于磁赤铁矿衍生物为8 nm和赤铁矿衍生物为20 nm的核-壳纳米颗粒的尺寸差异造成的。 (摘要由UMI缩短。)。

著录项

  • 作者

    Vaughan, Lisa A.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Chemistry Inorganic.;Engineering Materials Science.;Environmental Sciences.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 188 p.
  • 总页数 188
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:44:57

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号