首页> 外文学位 >A novel critical period for inhibitory plasticity in rat somatosensory cortex.
【24h】

A novel critical period for inhibitory plasticity in rat somatosensory cortex.

机译:大鼠体感皮层抑制可塑性的一个新的关键时期。

获取原文
获取原文并翻译 | 示例

摘要

The cerebral cortex encodes sensory information with astonishing precision, but it is also confronted with the impressive task of reworking and rewiring its physiology in the face of a changing environment. Hubel and Weisel first characterized the impact of sensory deprivation on the development of cortical response properties, but there is still much we do not know about which forms of cortical plasticity are induced with sensory deprivation, as well as which cell types and synapses mediate plasticity. While traditional models of cortical plasticity proposed Hebbian ("use it or lose it") rules in excitatory circuits as the primary substrate for cortical plasticity, recent advances to the classical model include an important role for non-Hebbian forms of plasticity, and show that inhibitory circuits are a major site of sensory plasticity. A precisely regulated balance between cortical excitation and inhibition is crucial for sensory processing and plasticity, but our understanding of inhibitory synapse development is lacking. Here we investigate the impact of sensory experience on the development and function of inhibitory synapses in rat primary somatosensory cortex.;I deprived the D-row of rat whiskers (beginning on the 7th postnatal day, P7) in order to probe how experience guides inhibitory synapse development. I found that deprivation reduced inhibitory currents at P15 in layer (L) 4 and at P21 in L2/3. Evoked inhibition was also reduced at P15 in L4. This reduction in inhibition constitutes a homeostatic form of plasticity, as it would ultimately increase excitatory activity in response to sensory deprivation. Surprisingly, inhibitory currents recovered to control (spared) levels after this one-day period.;Our findings demonstrate that the development of inhibitory signaling in S1 during the first postnatal month occurs in a largely experience- independent fashion, but that sensory deprivation during this period causes a delayed and transient reduction in the efficacy of inhibitory signaling. Our results also reveal that these transient changes in mIPSC amplitude and frequency can be dissociated, meaning that they are mechanistically independent. These results add to the growing body of evidence that inhibitory circuits undergo homeostatic plasticity in response to sensory use and disuse in primary sensory cortex.
机译:大脑皮层以惊人的精度对感觉信息进行编码,但面对不断变化的环境,它也面临着令人印象深刻的任务,即重新加工并重新连接其生理功能。 Hubel和Weisel首先描述了感觉剥夺对皮层反应特性发展的影响,但是我们仍然不清楚,感觉剥夺会诱发哪种形式的皮质可塑性,以及哪些细胞类型和突触介导可塑性。传统的皮质可塑性模型提出兴奋性回路中的Hebbian(“使用它或失去它”)规则是皮质可塑性的主要基础,而经典模型的最新进展包括非Hebbian可塑性形式的重要作用,并表明抑制性回路是感觉可塑性的主要部位。皮层兴奋和抑制之间的精确调节的平衡对于感觉过程和可塑性至关重要,但是我们对抑制突触的发展缺乏了解。在这里,我们研究了感觉经验对大鼠原代体感皮层抑制突触的发育和功能的影响。我剥夺了大鼠晶须的D行(从出生后第7天开始,P7),以探究经验如何指导抑制突触的发展。我发现剥夺减少了第(L)4层中P15和L2 / 3中P21处的抑制电流。在L4的P15处引起的抑制也降低了。这种抑制作用的减少构成了可塑性的体内平衡形式,因为它最终会响应于感觉剥夺而增加兴奋性活动。出人意料的是,在这一天的时间之后,抑制电流恢复到了控制的(降低的)水平。我们的发现表明,在出生后的头一个月中,S1中抑制信号的发展以很大程度上与经验无关的方式发生,但是在此期间感觉丧失期间导致抑制性信号传导功效的延迟和短暂降低。我们的结果还表明,mIPSC幅度和频率的这些瞬态变化可以消除,这意味着它们在机制上是独立的。这些结果增加了越来越多的证据,即抑制性回路响应于初级感觉皮层的感觉使用和废弃而经历稳态的可塑性。

著录项

  • 作者

    Stevens, Renna J.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 89 p.
  • 总页数 89
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号