首页> 外文学位 >Photonic devices utilizing subwavelength light confinement.
【24h】

Photonic devices utilizing subwavelength light confinement.

机译:利用亚波长光限制的光子器件。

获取原文
获取原文并翻译 | 示例

摘要

Photonic devices utilizing subwavelength light confinement have been of interest due to many interesting optical properties introduced by the peculiar field distributions in the structures of subwavelength feature sizes. As a result of recent advances in nanofabrication, these photonic devices can now be experimentally demonstrated. We present our theoretical and experimental studies of several subwavelength structures showing the optical responses different from other structures.;First, we investigated the optical properties of deep subwavelength metallic structures with finding their magnetic and electric resonances. These magnetic and electric resonances can lead to electromagnetic properties not existing in nature. We designed a new split-ring resonator (SRR) geometry which has negative permeability and negative permittivity in order to construct low loss negative index materials. The new design helped to make the operating wavelength shifted down to visible region from the infrared region where most of other SRR geometries operate. Next, because of the field enhancements arising from the electric resonances, metallic nanoparticles had been previously studied for sensing using the amplitude response of the electronic resonances. However, the phase response could also carry important information. We investigated both the amplitude and phase responses of anisotropic and uniformly oriented gold nanoparticles and the relation between them.;Additionally, we studied the guidance of light utilizing the surface modes. Surface modes supported at metal surface propagates with a larger effective index, a larger confinement factor, and a smaller mode size than modes in an air-cladded waveguide. We proposed metal-capped microdisk cavities supporting surface modes in the transverse dimension. Having a larger effective index reduces the radiation loss and can increase the cavity Q factor. Having a larger cavity Q factor, a larger confinement factor, and a smaller mode size can lower the threshold for lasing. However, these benefits are accompanied by the additional propagation loss of surface modes introduced by the metal absorption. To reduce this metal absorption, we designed alternative structures which incorporate metal-sandwiched and photonic crystal structures in the transverse dimension. By improving the performances of subwavelength cavities, they can serve as the substantial building blocks for integrated optics.
机译:由于亚波长特征尺寸的结构中独特的场分布引入了许多有趣的光学特性,因此利用亚波长光限制的光子器件引起了人们的关注。由于纳米制造的最新进展,现在可以通过实验证明这些光子器件。我们介绍了几种亚波长结构的理论和实验研究,显示出与其他结构不同的光学响应。这些磁共振和电共振会导致自然界中不存在的电磁特性。我们设计了一种具有负磁导率和负介电常数的新型开环谐振器(SRR)几何形状,以便构造低损耗的负折射率材料。新设计有助于使工作波长从大多数其他SRR几何形状运行的红外区域向下移至可见区域。接下来,由于由共振引起的场增强,先前已经研究了金属纳米颗粒用于利用电子共振的幅度响应进行感测。但是,相位响应也可能携带重要信息。我们研究了各向异性和均匀取向的金纳米粒子的振幅和相位响应及其之间的关系。此外,我们还利用表面模式研究了光的导引。与气包波导中的模式相比,在金属表面支撑的表面模式以更大的有效折射率,更大的限制因子和更小的模式尺寸传播。我们提出了在横向尺寸上支持表面模式的金属封闭微盘腔。具有较大的有效折射率会减少辐射损耗,并会增加腔体Q因子。具有较大的腔Q因子,较大的限制因子和较小的模式尺寸可以降低发射激光的阈值。然而,这些好处伴随着由金属吸收引入的表面模式的额外传播损失。为了减少这种金属吸收,我们设计了在横向尺寸上结合了金属夹层和光子晶体结构的替代结构。通过改善亚波长腔的性能,它们可以作为集成光学器件的重要组成部分。

著录项

  • 作者

    Chen, Yi-Hao.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Electronics and Electrical.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 87 p.
  • 总页数 87
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号