首页> 外文学位 >Sub-wavelength Metal-Clad Semiconductor Lasers.
【24h】

Sub-wavelength Metal-Clad Semiconductor Lasers.

机译:亚波长金属包覆半导体激光器。

获取原文
获取原文并翻译 | 示例

摘要

There has been a growing interest in the field of optoelectronics for sub-wavelength lasers due to an increased interest in better integration between optoelectronic and electronic components. Although advances have been made in the field of nanolasers with novel structures, further scaling of optical cavities beyond a sub-wavelength scale has been challenging due to the optical diffraction limit on the order of an optical wavelength. In this regard, the use of metal has been proven promising because electromagnetic wave rapidly decreases to zero within metal. However, it comes at a high cost of metal loss. Therefore, it is critical to optimize the optical cavity structure such that the overlap between the cavity and the electromagnetic field is maximized, thereby allowing the highest possible modal gain. In addition, to make the integration of the two possible, a sub-wavelength laser must have the following features: site-controllability, fine-tunability and out-coupling capability. In this Thesis, the use of metal for obtaining sub-wavelength nanolasers with the above features has been investigated in two different ways: surface plasmon mode and hybrid dielectric-plasmonic mode.;Surface plasmon-enabled sub-wavelength injection laser (SPESIL) uses a pure surface plasmon mode. Due to the location of electromagnetic field at the interface between metal and semiconductor, it suffers from tremendous amount of metal loss. Metal loss compensation by a gain medium nearby has been investigated and found to be true; however, it was shown to fall short of providing enough gain to reach lasing.;In a metal-clad semiconductor nanoring laser, the surface plasmon mode is replaced with a hybrid dielectric-plasmonic mode, in which the peak of the electromagnetic field is moved away from the metal interface. Therefore, metal loss is reduced. Furthermore, optical confinement factor (Gamma) is around 0.65, compared to 0.4 for SPESIL, providing a higher modal gain. Optically-pumped lasing in a metal-clad semiconductor nanoring laser was observed, and electrical injection was also investigated. Additionally, metal-clad nanoring laser is experimentally proven to possess fine-tuning capability with its two design parameters---ring width and ring diameter, which nanolasers often lack due to their high spectral range.
机译:由于对光电子与电子组件之间更好的集成的兴趣日益增加,因此在亚波长激光器的光电子学领域中的兴趣日益浓厚。尽管在具有新颖结构的纳米激光领域中已经取得了进步,但是由于光衍射级在光学波长的量级上,超过亚波长尺度的光腔的进一步缩放一直是挑战。在这方面,已经证明使用金属是有希望的,因为电磁波在金属内迅速减小到零。然而,这以金属损失为代价。因此,至关重要的是优化光学腔结构,以使腔和电磁场之间的重叠最大化,从而获得尽可能高的模态增益。另外,为了使两者成为可能,亚波长激光器必须具有以下特征:现场可控性,微调性和输出耦合能力。本文以两种不同的方式研究了金属用于获得具有上述特征的亚波长纳米激光的方法:表面等离激元模式和混合介电等离激元模式。表面等离激元使能子波长注入激光器(SPESIL)的使用纯表面等离子体激元模式。由于电磁场位于金属和半导体之间的界面处,因此会遭受大量的金属损失。已对附近增益介质的金属损耗补偿进行了调查,发现是正确的;在金属包覆的半导体纳米环激光器中,表面等离激元模式被混合电介质-等离激元模式所取代,在该模式中,电磁场的峰值移动了远离金属界面。因此,减少了金属损失。此外,光限制因子(Gamma)约为0.65,而SPESIL为0.4,提供了更高的模态增益。观察到在金属包覆的半导体纳米环激光器中的光泵浦激光,并且还研究了电注入。此外,实验证明金属包覆的纳米环激光器具有微调功能,它具有两个设计参数-环宽度和环直径,由于其高光谱范围,纳米激光器经常缺少这些参数。

著录项

  • 作者

    Kim, Min W.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Physics Solid State.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 102 p.
  • 总页数 102
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:44:56

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号