首页> 外文学位 >Effective viscosity of dilute bacterial suspensions.
【24h】

Effective viscosity of dilute bacterial suspensions.

机译:稀释细菌悬浮液的有效粘度。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation explores the bulk (volume averaged) properties of suspensions of microswimmers in a fluid. A microswimmer is a microscopic object that propels itself through a fluid. A common example of a microswimmer is a bacterium, such as Bacillus subtilis. Our particular interest is the bulk rheological properties of suspensions of bacteria -- that is, studying how such a suspension deforms under the application of an external force. In the simplest case, the rheology of a fluid can be described by a scalar effective viscosity. The goal of this dissertation is to find explicit formulae for the effective viscosity in terms of known geometric and physical parameters characterizing bacteria and use them to explain experimental observations. Throughout the dissertation, we consider bacterial suspensions in the dilute limit, where bacteria are assumed to be so far apart that interactions between them are negligible. This simplifies calculations significantly and is the regime in which the most striking experimental results have been observed.;We first study suspensions of self-propelled particles using a two-dimensional (2D) Partial Differential Equation (PDE) model. A bacterium is modeled as a disk in 2D with self-propulsion provided by a point force in the fluid. A formula is obtained for the effective viscosity of such suspensions in the dilute limit. This formula includes the two terms that are found in the 2D version of Einstein's classical result for a passive suspension of spheres. To this, our main contribution is added, an additional term due to self-propulsion which depends on the physical and geometric properties of the suspension. This work demonstrates how bacterial self-propulsion can alter the viscosity of a fluid and highlights the importance of bacterial orientation.;Next, we present a more realistic PDE model for dilute suspensions of swimming bacteria in a three-dimensional fluid. In this work, a bacterium is modeled as a prolate spheroid with self-propulsion once more provided by a point force. Furthermore, the bacterium is subject to a random torque in order to model tumbling (random reorientation). This model is used to calculate the effective viscosity of the suspension from the microscopic details of the interaction of an elongated body with a prescribed background flow, once more in the dilute limit. Due to a bacterium's asymmetric shape (in particular, unlike the case of rotationally symmetric bacteria used in the first model), interactions with generic planar background flows cause the bacterium to preferentially align in certain directions. Due to the random torque, the steady-state distribution of orientations is unique for a given background flow. Under this distribution of orientations, self-propulsion produces a reduction in the effective viscosity. For sufficiently weak background flows, the effect of self-propulsion on the effective viscosity dominates all other contributions, leading to an effective viscosity of the suspension that is lower than the viscosity of the ambient fluid. This is in qualitative agreement with recent experiments on suspensions of Bacillus subtilis.;Finally, we present a method that can be used to rigorously justify our effective viscosity formulae. In particular, we present a mathematical proof of Einstein's formula for the effective viscosity of a dilute suspension of spheres when the spheres are centered on the vertices of a cubic lattice. This proof admits a generalization to other particle shapes and the inclusion of self-propulsion. We keep the size of the container finite in the dilute limit and consider boundary effects. Einstein's formula is recovered as a first-order asymptotic expansion of the effective viscosity in the volume fraction o. To rigorously justify this expansion, we obtain an explicit upper and lower bound on the effective viscosity and show that they match to order o3/2.
机译:本文探讨了微泳剂在流体中的悬浮液的体积(体积平均)特性。微型游泳器是一种微观物体,可使其自身通过流体。微游泳器的常见示例是细菌,例如枯草芽孢杆菌。我们特别感兴趣的是细菌悬浮液的整体流变特性-也就是说,研究这种悬浮液在外力作用下如何变形。在最简单的情况下,流体的流变性可以用标量有效粘度来描述。本文的目的是根据已知的表征细菌的几何和物理参数找到有效粘度的明确公式,并用它们来解释实验观察结果。在整个论文中,我们认为细菌悬浮液处于稀释极限,其中细菌被认为相距太远,因此它们之间的相互作用可忽略不计。这极大地简化了计算,并且是观察到最惊人实验结果的方式。我们首先使用二维(2D)偏微分方程(PDE)模型研究自推进颗粒的悬浮液。细菌被建模为2D的圆盘,通过流体中的点力提供自我推进。得到这样的悬浮液在稀释极限内的有效粘度的公式。该公式包括在爱因斯坦经典结果的2D版本中关于球体的被动悬挂的两个术语。为此,我们增加了主要贡献,这是由于自我推进而产生的另一个术语,它取决于悬架的物理和几何特性。这项工作证明了细菌的自我推进作用如何改变液体的粘度,并突出了细菌定向的重要性。接下来,我们提出了一种更现实的PDE模型,用于在三维液体中稀释游泳细菌的悬浮液。在这项工作中,细菌再一次被点力提供为具有自我推进能力的扁长球体模型。此外,细菌受到随机扭矩作用以模拟翻滚(随机重新定向)。该模型用于根据细长体与规定的背景流(在稀释极限中)的相互作用的微观细节来计算悬浮液的有效粘度。由于细菌的不对称形状(特别是与第一个模型中使用的旋转对称细菌不同),与通用平面背景流的相互作用导致细菌优先沿特定方向排列。由于随机转矩,对于给定的背景流,方向的稳态分布是唯一的。在这种定向分布下,自推进会降低有效粘度。对于足够弱的背景流动,自推进对有效粘度的影响将主导所有其他贡献,从而导致悬浮液的有效粘度低于环境流体的粘度。这与枯草芽孢杆菌悬浮液的最新实验在质量上吻合。最后,我们提出了一种可用于严格证明我们有效粘度公式的方法。特别是,当球体位于立方晶格的顶点中心时,我们为球体的稀悬浮液的有效粘度提供了爱因斯坦公式的数学证明。该证据允许将其推广到其他粒子形状并包含自推进。我们将容器的大小保持在稀释极限内,并考虑边界效应。爱因斯坦公式作为有效粘度在体积分数o中的一阶渐近展开而恢复。为了严格证明这种膨胀的合理性,我们获得了有效粘度的明确上限和下限,并表明它们与o3 / 2阶相匹配。

著录项

  • 作者

    Haines, Brian M.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Applied Mathematics.;Biophysics General.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 132 p.
  • 总页数 132
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号