首页> 外文学位 >Stochastic studies of dislocation mobility in BCC alloys.
【24h】

Stochastic studies of dislocation mobility in BCC alloys.

机译:BCC合金中位错迁移率的随机研究。

获取原文
获取原文并翻译 | 示例

摘要

The interaction of dislocations and solute atoms is key to understanding crystal plasticity in alloys. I present a kinetic Monte Carlo (kMC) simulation of the glide of a screw dislocation in the presence of substitutional atoms. The dislocation motion is represented by the kink diffusion model, which explicitly includes double kink nucleation, kink migration and kink-kink annihilation. The rates at which these unit processes occur are calculated using parameters obtained through ab initio and molecular dynamics simulations. Nucleation of a stable double kink on a dislocation takes a long time leading to inefficient simulations. I present a novel method to integrate over the initial sub-critical double kink formation events. The method involves calculation of the first passage time for a temporally homogenous discrete state Markov process. Such an approach may be used in other situations involving the consideration of fast events in kMC simulations, which may otherwise lead to computational bottlenecks. Incorporation of such a first passage time analysis is key to efficient simulations in the present case. Simulations at several solute concentrations and a range of stresses and temperatures are performed for the case of a screw dislocation in bcc tantalum and molybdenum. The effects of the operating parameters such as the temperature and applied stress on the velocity of the dislocation are represented as mobility laws. Effect of different types of short- and long-range solute dislocation interactions on these mobility laws is studied by the kMC simulations. These mobility laws can then be used in Dislocation Dynamics (DD) simulations that parameterize the dependence of dislocation velocity on operating parameters and solute concentrations in alloys. Thus, the kMC method described here can be employed to bridge the length and time scales between the atomic scale simulations that operate on the order of pico-seconds and large scale dislocation dynamics simulations of crystal plasticity.
机译:位错和溶质原子的相互作用是理解合金中晶体可塑性的关键。我提出了在存在取代原子的情况下螺杆位错滑行的动力学蒙特卡洛(kMC)模拟。位错运动由扭结扩散模型表示,该模型明确包括双扭结成核,扭结迁移和扭结-ni灭。这些单元过程发生的速率是使用通过从头算和分子动力学模拟获得的参数来计算的。位错上的稳定双扭结的成核需要很长时间,导致模拟效率低下。我提出了一种整合初始亚临界双扭结形成事件的新方法。该方法涉及时间均匀离散状态马尔可夫过程的第一通过时间的计算。这种方法可用于涉及kMC仿真中考虑快速事件的其他情况,否则可能会导致计算瓶颈。在当前情况下,结合这样的首次通过时间分析是有效模拟的关键。对于bcc钽和钼中的螺丝错位情况,在几个溶质浓度以及一定范围的应力和温度下进行了模拟。温度和外加应力等操作参数对位错速度的影响表示为迁移率定律。通过kMC模拟研究了不同类型的短程和长程溶质位错相互作用对这些迁移率定律的影响。然后,可以将这些迁移率定律用于位错动力学(DD)仿真中,该仿真参数化了位错速度对合金中的工作参数和溶质浓度的依赖性。因此,此处描述的kMC方法可用于在以皮秒级操作的原子尺度模拟和晶体可塑性的大规模位错动力学模拟之间架起长度和时间尺度。

著录项

  • 作者

    Deo, Chaitanya Suresh.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Materials Science.; Engineering Metallurgy.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 193 p.
  • 总页数 193
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;冶金工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号