首页> 外文学位 >QoS-aware fine-grained power management in networked computing systems.
【24h】

QoS-aware fine-grained power management in networked computing systems.

机译:联网计算系统中支持QoS的细粒度电源管理。

获取原文
获取原文并翻译 | 示例

摘要

Power is a major design concern of today's networked computing systems, from low-power battery-powered mobile and embedded systems to high-power enterprise servers. Embedded systems are required to be power efficiency because most embedded systems are powered by battery with limited capacity. Similar concern of power expenditure rises as well in enterprise server environments due to cooling requirement, power delivery limit, electricity costs as well as environment pollutions.;The power consumption in networked computing systems includes that on circuit board and that for communication. In the context of networked real-time systems, the power dissipation on wireless communication is more significant than that on circuit board. We focus on packet scheduling for wireless real-time systems with renewable energy resources. In such a scenario, it is required to transmit data with higher level of importance periodically. We formulate this packet scheduling problem as an NP-hard reward maximization problem with time and energy constraints. An optimal solution with pseudo-polynomial time complexity is presented. In addition, we propose a sub-optimal solution with polynomial time complexity.;Circuit board, especially processor, power consumption is still the major source of system power consumption. We provide a general-purposed, practical and comprehensive power management middleware for networked computing systems to manage circuit board power consumption thus to affect system-level power consumption. It has the functionalities of power and performance monitoring, power management (PM) policy selection and PM control, as well as energy efficiency analysis. This middleware includes an extensible PM policy library. We implemented a prototype of this middleware on Base Band Units (BBUs) with three PM policies enclosed. These policies have been validated on different platforms, such as enterprise servers, virtual environments and BBUs.;In enterprise environments, the power dissipation on circuit board dominates. Regulation on computing resources on board has a significant impact on power consumption. Dynamic Voltage and Frequency Scaling (DVFS) is an effective technique to conserve energy consumption. We investigate system-level power management in order to avoid system failures due to power capacity overload or overheating. This management needs to control the power consumption in an accurate and responsive manner, which cannot be achieve by the existing black-box feedback control. Thus we present a model-predictive feedback controller to regulate processor frequency so that power budget can be satisfied without significant loss on performance.;In addition to providing power guarantee alone, performance with respect to service-level agreements (SLAs) is required to be guaranteed as well. The proliferation of virtualization technology imposes new challenges on power management due to resource sharing. It is hard to achieve optimization in both power and performance on shared infrastructures due to system dynamics. We propose vPnP, a feedback control based coordination approach providing guarantee on application-level performance and underlying physical host power consumption in virtualized environments. This system can adapt gracefully to workload change. The preliminary results show its flexibility to achieve different levels of tradeoffs between power and performance as well as its robustness over a variety of workloads.;It is desirable for improve energy efficiency of systems, such as BBUs, hosting softreal time applications. We proposed a power management strategy for controlling delay and minimizing power consumption using DVFS. We use the Robbins-Monro (RM) stochastic approximation method to estimate delay quantile. We couple a fuzzy controller with the RM algorithm to scale CPU frequency that will maintain performance within the specified QoS.
机译:从低功率电池供电的移动和嵌入式系统到大功率企业服务器,功率是当今网络计算系统的主要设计关注点。嵌入式系统必须具有能效,因为大多数嵌入式系统都是由容量有限的电池供电的。由于冷却要求,功率传送限制,电费以及环境污染,在企业服务器环境中,对功耗的关注也增加了;网络计算系统的功耗包括电路板上的功耗和通信功耗。在网络实时系统中,无线通信的功耗比电路板上的功耗更大。我们专注于具有可再生能源的无线实时系统的数据包调度。在这种情况下,需要周期性地发送具有较高重要性的数据。我们将此数据包调度问题表述为具有时间和能量约束的NP硬奖励最大化问题。提出了具有拟多项式时间复杂度的最优解。另外,我们提出了一个具有多项式时间复杂度的次优解决方案。电路板,特别是处理器,功耗仍然是系统功耗的主要来源。我们为网络计算系统提供通用,实用且全面的电源管理中间件,以管理电路板功耗,从而影响系统级功耗。它具有电源和性能监视,电源管理(PM)策略选择和PM控制以及能效分析的功能。该中间件包括一个可扩展的PM策略库。我们在带有三个PM策略的基带单元(BBU)上实现了该中间件的原型。这些策略已在不同平台(例如企业服务器,虚拟环境和BBU)上得到验证。在企业环境中,电路板上的功耗占主导。机载计算资源的法规对功耗有重大影响。动态电压和频率缩放(DVFS)是节省能源消耗的有效技术。我们调查系统级电源管理,以避免由于电源容量过载或过热而导致系统故障。这种管理需要以准确,响应迅速的方式控制功耗,而现有的黑匣子反馈控制无法实现。因此,我们提出了一种模型预测反馈控制器来调节处理器频率,从而可以满足功率预算而不会显着降低性能。;除了单独提供功率保证之外,还需要针对服务水平协议(SLA)提供性能也保证。由于资源共享,虚拟化技术的普及给电源管理带来了新的挑战。由于系统动态,很难在共享基础架构上实现功能和性能上的优化。我们提出了vPnP,这是一种基于反馈控制的协调方法,可为虚拟化环境中的应用程序级性能和底层物理主机功耗提供保证。该系统可以适应工作负载的变化。初步结果表明,它具有灵活性,可以在功率和性能之间实现不同程度的折衷,并且在各种工作负载下都具有鲁棒性。对于提高托管软实时应用程序的系统(例如BBU)的能源效率,这是理想的。我们提出了一种电源管理策略,用于控制延迟并使用DVFS将功耗降至最低。我们使用Robbins-Monro(RM)随机逼近方法来估计延迟分位数。我们将模糊控制器与RM算法结合使用以缩放CPU频率,以将性能保持在指定的QoS之内。

著录项

  • 作者

    Gong, Jiayu.;

  • 作者单位

    Wayne State University.;

  • 授予单位 Wayne State University.;
  • 学科 Engineering Computer.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号