首页> 外文学位 >RFamide Peptides and Ovulation: Circadian Control and Environmental Disruptors.
【24h】

RFamide Peptides and Ovulation: Circadian Control and Environmental Disruptors.

机译:RFamide肽和排卵:昼夜节律控制和环境破坏者。

获取原文
获取原文并翻译 | 示例

摘要

Successful reproduction depends upon a highly orchestrated cascade of events during optimal environmental conditions in order to appropriately time ovulation. In spontaneously ovulating rodents, neurons in the hypothalamus secreting gonadotropin-releasing hormone (GnRH) are triggered by a timed, stimulatory signal originating from the circadian clock in the suprachiasmatic nucleus (SCN), initiating a cascade of events that ultimately leads to the release of a mature egg from it's follicle. Reproductive viability is maintained in part by the temporal precision of GnRH signaling, and ageingrelated declines in ovulatory function are a direct result of the dysregulation of circadian control of GnRH. The transition to reproductive senescence is characterized by irregular estrous cycles prior to any decline in ovarian reserves, suggesting the central mechanisms controlling GnRH are initially responsible for determining reproductive quiescence.;In addition to the circadian control of the HPG axis, most mammals are markedly affected by the availability of energy with regard to reproductive function. In most natural habitats, food availability and energetic status fluctuate markedly, requiring individuals within a species to prioritize survival via foraging and ingestive behaviors over behaviors that perpetuate the individual during periods of low available energy. Consequently, the mechanisms monitoring available energy also regulate the reproductive axis, primarily through inhibiting or permitting the release of GnRH under specific energetic conditions.;The specific mechanisms connecting the circadian clock and energy balance to the reproductive axis remain to be fully characterized. Two related RFamide (Arg-PHe-NH2), kisspeptin and RFamide-related peptide-3 (RFRP-3) stimulate and inhibit GnRH, respectively, and may bridge the gap between the circadian system, energy balance and reproduction. All studies utilized female Syrian hamsters, which exhibit precise 4-day estrous cycles and are considered to be ideal model systems for understanding reproductive cyclicity. In the first series of experiments, the role of kisspeptin in the circadian control of ovulation was examined. Kisspeptin neurons exhibit a circadian pattern of activation and are regulated by the SCN via vasopressin (AVP) efferents. AVP administration upregulates kisspeptin indiscriminately, but the GnRH response is restricted to the afternoon. Furthermore, GnRH neurons exhibited a timed sensitivity to kisspeptin administration, suggesting these neurons act as a gating site for upstream signals in order to properly time ovulation.;The circadian control of RFamide peptides may be critical to maintain ovulatory function in aging animals. The second set of experiments investigated whether or not the transition to reproductive acyclicity is characterized by disruptions in the timing of RFamide activation. Middle-aged, female Syrian hamsters exhibiting irregular estrous cycles displayed alterations in the timing of RFRP-3 activation, compared to young and middle-aged, regularly cycling hamsters. Furthermore, middle-aged hamsters exhibit abnormally high levels of kisspeptin immunoreactivity around the time of the LH surge, which may be indicative of improper kisspeptin release during the periovulatory period.;The final set of experiments aimed to determine whether or not the neural circuitry detecting energy status communicates to RFRP-3, and if metabolic challenge, such as food deprivation, alters the activational state of this inhibitory peptide. RFRP-3 activation increases following 48 hours of food deprivation, and may downregulate the HPG axis during periods of negative energy balance. Furthermore, immense innervation of RFRP-3 by the orexigenic peptide, NPY, provides a mechanism of control between these two systems. Finally, mild food restriction over 4-12 days increases RFRP-3 activation, as well as motivation to engage in food hoarding over sexual behaviors. Interestingly, the food restriction paradigm does not alter food intake or estrous cyclicity, suggesting a novel role of RFRP-3 in motivated behaviors.
机译:成功繁殖取决于在最佳环境条件下精心策划的一系列事件,以便适当地排卵。在自发排卵的啮齿动物中,下丘脑中分泌促性腺激素释放激素(GnRH)的神经元是由定时的刺激信号触发的,该信号来自于视交叉上核(SCN)的昼夜节律,从而引发一系列事件,最终导致释放来自卵泡的成熟卵。 GnRH信号的时间精确性可部分维持生殖能力,而与衰老相关的排卵功能下降是GnRH的昼夜节律控制失调的直接结果。向生殖衰老过渡的特征是在卵巢储备下降之前出现不规则的发情周期,这表明控制GnRH的主要机制最初是决定生殖静止的原因;除了对HPG轴的昼夜节律控制外,大多数哺乳动物均受到明显影响。通过生殖功能方面的能量供应。在大多数自然栖息地中,食物的可利用性和活力状态显着波动,要求物种内的个体优先通过觅食和摄食行为优先生存,而不是在可用能量较低时使个体永续的行为。因此,监测可用能量的机制还主要通过在特定的高能条件下抑制或允许GnRH的释放来调节生殖轴。;将生物钟和能量平衡连接至生殖轴的特定机制仍有待充分表征。两种相关的RFamide(Arg-PHe-NH2),kisseptin和RFamide相关的肽3(RFRP-3)分别刺激和抑制GnRH,并可能在昼夜节律系统,能量平衡和生殖之间架起桥梁。所有研究均使用雌性叙利亚仓鼠,它们表现出精确的4天发情周期,被认为是了解生殖周期的理想模型系统。在第一个系列实验中,检查了Kisspeptin在昼夜节律控制排卵中的作用。 Kisspeptin神经元表现出昼夜节律性激活,并受SCN通过加压素(AVP)传出的调节。 AVP的管理会随意上调基肽素,但GnRH反应仅限于下午。此外,GnRH神经元对kisseptin的给药表现出定时敏感性,表明这些神经元充当上游信号的门控位点,以适当地排卵。昼夜控制RFamide肽对于维持衰老动物的排卵功能可能至关重要。第二组实验研究了向生殖无环性的转变是否以RFamide活化时间的中断为特征。与年轻和中年定期骑行的仓鼠相比,表现出不规则发情周期的中年雌性叙利亚仓鼠显示出RFRP-3激活时间的改变。此外,中年仓鼠在LH激增时表现出异常高水平的KissPeptin免疫反应性,这可能表明在围排卵期Kisspeptin释放不当。最后一组实验旨在确定神经回路是否检测到能量状态传达给RFRP-3,如果代谢挑战(例如食物匮乏)改变了该抑制肽的激活状态。禁食48小时后,RFRP-3激活增加,并且在能量平衡为负的时期可能会下调HPG轴。此外,致癌肽NPY对RFRP-3的巨大神经支配提供了这两个系统之间的控制机制。最后,在4至12天内轻度限制食物会增加RFRP-3的激活,并增加因性行为而进行食物ard积的动机。有趣的是,食物限制范例不会改变食物的摄入量或发情周期,这表明RFRP-3在动机行为中具有新型作用。

著录项

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Biology Neuroscience.;Biology Endocrinology.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 97 p.
  • 总页数 97
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号