首页> 外文学位 >Investigating Charge Transport Mechanisms and Spatially Localized Photocurrent Variation in Organic Photovoltaic Devices.
【24h】

Investigating Charge Transport Mechanisms and Spatially Localized Photocurrent Variation in Organic Photovoltaic Devices.

机译:研究有机光伏器件中的电荷传输机制和空间局部光电流变化。

获取原文
获取原文并翻译 | 示例

摘要

Although the performance of bulk heterojunction (BHJ) organic photovoltaic (OPV) devices is known to be closely related to the interpenetrating phase-separated network of the photoactive layer nanostructure, much initial work focused on improving relatively simplistic metrics such as efficiency and spectral response. Electron microscopy and tomography have yielded important insights into the nature of device morphology, but these methods are often expensive, time-consuming, and most significantly, do not allow for in situ analysis of operating devices. This dissertation focuses on better understanding the role of interfaces and active layer morphology through approaches that enable the analysis of operating devices.;The basic device architecture analyzed here is a glass substrate coated with an indium tin oxide (ITO) anode, a poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) interfacial layer, a poly(3-hexylthiophene):[6,6]-phenyl-C 61-butyric acid methyl ester (P3HT:PCBM) photoactive layer, and an aluminum cathode. The primary analysis techniques include atomic force photovoltaic microscopy (AFPM), developed as part of this work, and impedance spectroscopy with equivalent circuit modeling. Conductive atomic force microscopy and photoelectron spectroscopy techniques are also extensively employed, particularly in the investigation of anode surface properties.;AFPM analysis demonstrates spatially localized photocurrent variations in operating micron-scale devices, which are too large to be related to P3HT and PCBM segregation alone. By varying anode surface treatments we show a correlation between the conductive uniformity of the anode surface and the variability observed in the photocurrent, suggesting that electrical inhomogeneities in the anode surface are passed through the active layer film. In situ impedance analysis of P3HT:PCBM devices provides an indirect measure of active layer morphology. We acquire and analyze the impedance response of these devices, which we relate to illumination and processing conditions, average charge carrier lifetime, and efficiency among other factors. We present a simple equivalent circuit model and show how the time constant extracted from this model can be related to device performance. Taken together, these results suggest that tailoring the electrical properties of the anode could be important for improving device efficiency and that impedance spectroscopy could be a relatively simple tool for optimizing new BHJ materials systems.
机译:尽管已知体异质结(BHJ)有机光伏(OPV)器件的性能与光敏层纳米结构的互穿相分离网络密切相关,但许多初期工作集中在改进相对简单的度量(例如效率和光谱响应)上。电子显微镜和断层扫描已对设备形态的本质产生了重要的见识,但是这些方法通常昂贵,费时且最重要的是不允许对操作设备进行原位分析。本论文着重于通过能够分析操作器件的方法更好地理解界面和有源层形态的作用。此处分析的基本器件架构是涂覆有铟锡氧化物(ITO)阳极,聚(3)的玻璃基板,4-乙撑二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)界面层,聚(3-己基噻吩):[6,6]-苯基-C 61-丁酸甲酯(P3HT:PCBM)光敏层,和铝阴极。主要的分析技术包括作为这项工作的一部分开发的原子力光伏显微镜(AFPM),以及具有等效电路模型的阻抗谱。导电原子力显微镜和光电子能谱技术也被广泛使用,尤其是在阳极表面性能的研究中。AFPM分析表明,在工作的微米级器件中存在空间局部的光电流变化,这些变化太大而无法与P3HT和PCBM隔离相关。通过改变阳极表面处理,我们显示出阳极表面的导电均匀性与在光电流中观察到的变化之间的相关性,表明阳极表面中的电不均匀性通过了活性层薄膜。 P3HT:PCBM器件的原位阻抗分析提供了活性层形态的间接度量。我们获取并分析了这些设备的阻抗响应,这些响应与照明和处理条件,平均电荷载流子寿命以及效率以及其他因素有关。我们提出了一个简单的等效电路模型,并展示了从该模型中提取的时间常数如何与器件性能相关。综上所述,这些结果表明,定制阳极的电性能对于提高装置效率可能是重要的,并且阻抗谱可能是用于优化新型BHJ材料系统的相对简单的工具。

著录项

  • 作者

    Leever, Benjamin Jay.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Chemistry Physical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号