首页> 外文学位 >Computable Performance Analysis of Recovering Signals with Low-dimensional Structures.
【24h】

Computable Performance Analysis of Recovering Signals with Low-dimensional Structures.

机译:低维结构恢复信号的可计算性能分析。

获取原文
获取原文并翻译 | 示例

摘要

The last decade witnessed the burgeoning development in the reconstruction of signals by exploiting their low-dimensional structures, particularly, the sparsity, the block-sparsity, the low-rankness, and the low-dimensional manifold structures of general nonlinear data sets. The reconstruction performance of these signals relies heavily on the structure of the sensing matrix/operator. In many applications, there is a flexibility to select the optimal sensing matrix among a class of them. A prerequisite for optimal sensing matrix design is the computability of the performance for different recovery algorithms.;I present a computational framework for analyzing the recovery performance of signals with low-dimensional structures. I define a family of goodness measures for arbitrary sensing matrices as the optimal values of a set of optimization problems. As one of the primary contributions of this work, I associate the goodness measures with the fixed points of functions defined by a series of linear programs, second-order cone programs, or semidefinite programs, depending on the specific problem. This relation with the fixed-point theory, together with a bisection search implementation, yields efficient algorithms to compute the goodness measures with global convergence guarantees. As a by-product, we implement efficient algorithms to verify sufficient conditions for exact signal recovery in the noise-free case. The implementations perform orders-of-magnitude faster than the state-of-the-art techniques.;The utility of these goodness measures lies in their relation with the reconstruction performance. I derive bounds on the recovery errors of convex relaxation algorithms in terms of these goodness measures. Using tools from empirical processes and generic chaining, I analytically demonstrate that as long as the number of measurements are relatively large, these goodness measures are bounded away from zeros for a large class of random sensing matrices, a result parallel to the probabilistic analysis of the restricted isometry property. Numerical experiments show that, compared with the restricted isometry based performance bounds, our error bounds apply to a wider range of problems and are tighter, when the sparsity levels of the signals are relatively low. I expect that computable performance bounds would open doors for wide applications in compressive sensing, sensor arrays, radar, MRI, image processing, computer vision, collaborative filtering, control, and many other areas where low-dimensional signal structures arise naturally.
机译:过去十年通过利用信号的低维结构,特别是通用非线性数据集的稀疏性,块稀疏性,低秩和低维流形结构,见证了信号重建中的蓬勃发展。这些信号的重建性能在很大程度上取决于感测矩阵/运算符的结构。在许多应用中,可以灵活地在其中的一类中选择最佳感测矩阵。最优感测矩阵设计的前提是不同恢复算法的性能可计算性。我提出了一种用于分析低维结构信号恢复性能的计算框架。我定义了一系列用于任意感应矩阵的优度度量,作为一系列优化问题的最优值。作为这项工作的主要贡献之一,我根据具体问题,将善意度量与一系列线性程序,二阶圆锥程序或半确定程序定义的函数的不固定点相关联。与定点理论的这种关系,再加上二等分搜索实现,产生了高效的算法,可以在全局收敛性保证下计算优度度量。作为副产品,我们实施了有效的算法,以验证在无噪声的情况下能够准确恢复信号的充分条件。这些实现的执行速度比最先进的技术快几个数量级。这些善良措施的实用性在于它们与重建性能的关系。根据这些优度测度,得出了凸松弛算法的恢复误差的界限。我使用经验过程和通用链中的工具进行分析,证明了只要测量的数量相对较大,对于大量的随机感测矩阵,这些优度测量就将零限制在一定范围内,其结果与概率分析的结果平行受限制的等距特性。数值实验表明,与基于等轴测的有限性能范围相比,当信号的稀疏度相对较低时,我们的误差范围适用于更广泛的问题,并且更加严格。我希望可计算的性能界限将为在压缩传感,传感器阵列,雷达,MRI,图像处理,计算机视觉,协作过滤,控制以及许多其他自然产生低维信号结构的领域中的广泛应用打开大门。

著录项

  • 作者

    Tang, Gongguo.;

  • 作者单位

    Washington University in St. Louis.;

  • 授予单位 Washington University in St. Louis.;
  • 学科 Mathematics.;Engineering Electronics and Electrical.;Statistics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 174 p.
  • 总页数 174
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号