首页> 外文学位 >Hydroaromatic equilibration during shikimic acid and quinic acid biosynthesis.
【24h】

Hydroaromatic equilibration during shikimic acid and quinic acid biosynthesis.

机译:sh草酸和奎尼酸生物合成过程中的氢芳烃平衡。

获取原文
获取原文并翻译 | 示例

摘要

The expense and limited availability of shikimic acid and quinic acid isolated from plants has impeded utilization of these hydroaromatics as synthetic starting materials. The microbial biocatalyses reported in this account could supplant the tedious, multi-step natural product isolation of shikimic acid and quinic acid. Recombinant Escherichia coli biocatalysts genetically engineered to biosynthesize shikimic acid from glucose accumulated not only shikimic acid, but sizable concentrations of quinic acid and 3-dehydroshikimic acid byproducts. 3-Dehydroshikimic acid accumulation results from the feedback inhibition of shikimate dehydrogenase by shikimic acid. The source of quinic acid formation is less clear however. Kinetic experiments revealed shikimate dehydrogenase was capable of accepting both 3-dehydroshikimic acid and 3-dehydroquinic acid as substrates for reduction. Fed-batch fermentor conditions which employed unlimited glucose availability shifted the typical 48 h glucose-limited E. coli SP1.1/pKD12.138A equilibrium from 28 g/L shikimic acid in 13% yield (mol/mol) from glucose as a 1.6:1.0:0.65 (mol/mol/mol) shikimate:quinate:3-dehydroshikimate mixture to 58 g/L shikimic acid in 23% yield (mol/mol) from glucose as a 18:1.0:4.9 (mol/mol/mol) mixture in 60 h.; Homologous quinic acid biosynthesis was investigated by evaluating E. coli QP1.1/pKD12.138A under glucose-limited fed-batch fermentor conditions. QP1.1/pKD12.138A synthesized 49 g/L of quinic acid from glucose in 20% (mol/mol) yield as a 15:1.0 (mol/mol) quinate:3-dehydroquinate mixture and established a hightiter, homologous route for quinic acid biosynthesis. Fed-batch fermentor conditions unlimited in glucose decreased the quinate:3-dehydroquinate ratio of QP1.1/pKD12.138A to 0.74 however.; Physiological State (PS) variable monitoring and control was applied to QP1.1/pKD12.138A within the framework of a Knowledge-Based (KB), intelligent control system. The KB control system consisted of four phases. The novel attributes of the KB control system included phase three manipulation of the specific oxygen uptake rate (SOUR) to approximate the oxygen transfer rate (OTR) increases observed during unlimited glucose availability, and phase four control of the carbon dioxide evolution rate (CER) by manipulating the glucose feed rate to the reactor. Reactor studies revealed that perturbations in the pseudo-steady-state glucose concentration of less than 1 mM could shift the quinate:3-dehydroquinate equilibrium ten-fold.; An online stoichiometric model (SM) was constructed using reactor mass balances and pseudo-online artificial neural network predictions as inputs. The SM predicted phosphoenolpyruvate (PEP) limitations occurred under high glucose uptake rate fermentation conditions during peak growth rates. The predicted PEP limitations were consistent with literature precedent and suggest that pps-encoded PEP synthase overexpression might alleviate QP1.1/pKD12.138A intracellular PEP limitations.
机译:从植物中分离出来的sh草酸和奎尼酸的价格昂贵和供应有限,阻碍了这些氢芳烃作为合成原料的利用。该文献报道的微生物生物催化剂可以取代sh草酸和奎尼酸的繁琐,多步骤的天然产物分离。经过基因工程改造以从葡萄糖中生物合成大肠杆菌生物催化剂不仅积累了iki草酸,而且还积累了大量的奎宁酸和3-脱氢hydro草酸副产物。 3-脱氢shi草酸的积累是由于sh草酸对inhibition草酸脱氢酶的反馈抑制。然而,奎尼酸形成的来源尚不清楚。动力学实验表明,sh草酸脱氢酶能够接受3-脱氢shi草酸和3-脱氢奎尼酸作为还原底物。补料分批发酵罐条件下使用了无限制的葡萄糖利用率,使典型的48小时葡萄糖限制的大肠杆菌 SP1.1 / pKD12.138A平衡从28 g / L iki草酸中以13%的收率(mol /摩尔比)的葡萄糖为1.6:1.0:0.65(mol / mol / mol)iki草酸酯:奎宁酸酯:3-脱氢shi草酸酯混合物制成58 g / L iki草酸,葡萄糖为18:1.0:23%(mol / mol): 4.9(mol / mol / mol)的混合物在60小时内;在葡萄糖受限的补料分批发酵罐条件下,通过评估大肠杆菌 QP1.1 / pKD12.138A,研究了同源奎尼酸的生物合成。 QP1.1 / pKD12.138A由葡萄糖合成49 g / L的奎宁酸,产率为20%(mol / mol),为15:1.0(mol / mol)的奎宁酸盐:3-脱氢奎宁酸盐混合物,并建立了高滴度的同源途径奎尼酸的生物合成。葡萄糖不受限制的分批补料发酵罐条件将QP1.1 / pKD12.138A的奎宁酸酯:3-脱氢奎宁酸酯比率降低至0.74。在基于知识的(KB)智能控制系统的框架内,将生理状态(PS)变量监视和控制应用于QP1.1 / pKD12.138A。 KB控制系统包括四个阶段。 KB控制系统的新颖属性包括:在无限制的葡萄糖可利用期间观察到的比氧吸收率(SOUR)的第三阶段操作,以近似观察到的氧传输速率(OTR)的增加;以及对二氧化碳释放速率(CER)的第四阶段控制通过控制向反应器的葡萄糖进料速率。反应堆研究表明,假稳态葡萄糖浓度小于1 mM时,扰动会使quinate:3-dehydroquinate平衡偏移十倍。使用反应堆质量平衡和伪在线人工神经网络预测作为输入,构建了一个在线化学计量模型(SM)。 SM预测的磷酸烯醇丙酮酸(PEP)局限性出现在峰值生长速率期间高葡萄糖摄取速率发酵条件下。预测的PEP局限性与文献先例一致,提示 pps 编码的PEP合酶过表达可能减轻QP1.1 / pKD12.138A细胞内PEP局限性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号