首页> 外文学位 >Reconfigurable silicon photonic devices for optical signal processing.
【24h】

Reconfigurable silicon photonic devices for optical signal processing.

机译:可重配置的硅光子器件,用于光信号处理。

获取原文
获取原文并翻译 | 示例

摘要

In this Ph.D. work, a low-power, low-loss, fast, and CMOS-compatible reconfiguration technology in developed for large-scale silicon photonic devices.;In Chapter 3, material and structural optimizations are carried out on the commonly used metallic microheaters to improve their reconfiguration speed. By appropriate pulse-excitation of these devices, sub-microsecond reconfiguration time is achieved. For the analysis of these devices, heat transport is modeled using finite-element method. Our numerical modeling results are in good agreement with our experimental results, suggesting that our modeling tool is reliable for extensive optimization purposes. We have also developed a system-level model that can describe the response of the microheater with very good accuracy. This model is a powerful tool for system-level studies of the microheater.;In Chapter 4, a new microheater architecture is proposed in which the microheater is directly fabricated over the silicon layer to utilize its high thermal conductivity for heat conduction. In this design, microheater is placed on the microdisk toward the center, and far from the optical mode. This device is fabricated on an silicon-on-insulator (SOI) wafer and the experimental results showed ≈80 ns heat propagation delay. With pulsed-excitation of these microheaters, sub-100-ns reconfiguration of the photonic device is demonstrated. The power consumption of this device with a 4 mum diameter microdisk is measured to be 1 mW per 2.4 nm resonance wavelength shift (or 265 GHz resonance frequency shift). To the best of our knowledge, this is the fastest thermal reconfiguration speed reported to this date with this level of power consumption and insertion loss.;The other major focus of this Ph.D. work, is on the design and demonstration of novel resonator-based reconfigurable photonic devices for nonlinear optics applications. In Chapter 5, a temporal coupled-mode theory is developed for four-wave mixing (FWM) in TWRs to model the performance of the proposed devices for nonlinear optics experiments. Here, a quasi-phase-matching theory in microresonators is developed for the first time that is applicable to complicated coupled-resonator structures.;In Chapter 6, a coupled-resonator device consisting of two resonators that are coupled through a Mach-Zehnder interferometer is proposed and experimentally demonstrated. This device enables the tuning of the resonance-frequency spacing up to one whole free-spectra range. This is achieved by tuning of the mutual coupling of the resonators through the interferometer coupling the two resonators. To the best of our knowledge, this the first integrated device that enables this level of tuning of the resonance frequency spacing. This device is also designed for a FWM experiment and it is shown that the resonance condition for an efficient FWM process can be fine tuned using integrated microheaters over the interferometer.;In Chapter 7, a three-element coupled-resonator device is proposed and demonstrated for FWM in silicon. This device enables the design of the frequency detuning of the signal/idler modes from the pump mode through the mutual coupling of resonators and not their length. This allows us to utilize ultra-small microdisks with very large field enhancement forFWMapplication for the first time. Wavelength conversion is demonstrated in this device and the experimental results are in good agreement with the theoretical predictions of the developed coupled-mode theory in Chapter 5.;Another design issue in the resonator-based nonlinear optics devices is the different bandwidth requirements of the interacting waves. In Chapter 8, a new interferometric coupling scheme is proposed and demonstrated that enables designing the optimum bandwidth (and coupling) condition for all the interacting waves. Microheaters are incorporated in this device to accurately adjust the coupling condition. To the best of our knowledge, this is the first design addressing this issue in resonator-based nonlinear optics on chip. (Abstract shortened by UMI.)
机译:在这个博士学位这项工作是针对大型硅光子器件开发的一种低功耗,低损耗,快速且兼容CMOS的重构技术。;在第3章中,对常用的金属微加热器进行了材料和结构优化,以改善它们的性能。重新配置速度。通过对这些设备进行适当的脉冲激励,可以实现亚微秒的重新配置时间。为了分析这些设备,使用有限元方法对热传递进行建模。我们的数值建模结果与我们的实验结果非常吻合,表明我们的建模工具对于广泛的优化目的是可靠的。我们还开发了系统级模型,可以非常精确地描述微加热器的响应。该模型是用于微加热器的系统级研究的有力工具。在第四章​​中,提出了一种新的微加热器架构,其中该微加热器直接在硅层上制造,以利用其高导热率进行导热。在这种设计中,微型加热器朝着中央放置在微型磁盘上,并且远离光学模式。该器件在绝缘体上硅(SOI)晶圆上制造,实验结果表明传热延迟约为80 ns。通过这些微型加热器的脉冲激励,演示了光子器件的亚100 ns以下重新配置。经测量,具有4微米直径微盘的该设备的功耗为每2.4 nm共振波长偏移(或265 GHz共振频率偏移)为1 mW。据我们所知,这是迄今为止报告的最快的热重配置速度,其功耗和插入损耗达到这一水平。这项工作是针对非线性光学应用的新型基于谐振器的可重构光子器件的设计和演示。在第5章中,针对TWR中的四波混频(FWM),开发了一种时间耦合模式理论,以对所提出的用于非线性光学实验的器件的性能进行建模。这里,首次开发了微谐振器中的准相位匹配理论,该理论适用于复杂的耦合谐振器结构。在第6章中,耦合谐振器装置由两个通过Mach-Zehnder干涉仪耦合的谐振器组成提出并通过实验证明。该设备可以将共振频率间隔调整到一个完整的自由光谱范围。这是通过通过耦合两个谐振器的干涉仪调谐谐振器的相互耦合来实现的。据我们所知,这是第一款能够对共振频率间隔进行这种级别的调节的集成设备。该器件还设计用于FWM实验,结果表明,可以通过干涉仪上的集成微加热器对有效FWM过程的谐振条件进行微调。;在第7章中,提出并演示了三元耦合谐振器设备。用于硅中的FWM。通过谐振器的相互耦合而不是它们的长度,该设备能够设计出信号/空闲模式与泵浦模式之间的频率失谐。这使我们首次可以将具有超大现场增强功能的超小型微磁盘用于FWM应用。该器件演示了波长转换,实验结果与第5章中开发的耦合模式理论的理论预测非常吻合;基于谐振器的非线性光学器件的另一个设计问题是相互作用的带宽要求不同波浪。在第8章中,提出并演示了一种新的干涉耦合方案,该方案可以为所有相互作用的波设计最佳带宽(和耦合)条件。该设备中装有微型加热器,以精确地调节耦合条件。据我们所知,这是第一个解决基于谐振器的片上非线性光学器件的设计。 (摘要由UMI缩短。)

著录项

  • 作者

    Atabaki, Amir H.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Electronics and Electrical.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 176 p.
  • 总页数 176
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号