首页> 外文学位 >The Transformation of Second-Order Linear Systems into Independent Equations.
【24h】

The Transformation of Second-Order Linear Systems into Independent Equations.

机译:二阶线性系统到独立方程的转换。

获取原文
获取原文并翻译 | 示例

摘要

Linear second-order ordinary differential equations arise from Newton's second law combined with Hooke's law and are ubiquitous in mechanical and civil engineering. Perhaps the most prominent example is a mathematical model for small oscillations of particles around their equilibrium positions. However, second-order systems also find applications in such diverse areas as chemical engineering, structural dynamics, linear systems theory or even economics. Very large second-order systems appear, for example, in mathematical modeling of complex structures by finite-element methods.;In general, any system of second-order equations is coupled. Each equation is linked to at least one of its neighbors and the solution of one of the equations requires the solution of all equations. The "classical decoupling problem" is concerned with the elimination of coordinate coupling in linear dynamical systems. The decoupling transforms the system of equations into a collection of mutually independent equations so that each equation can be solved without solving any other equation. In "The Theory of Sound" in 1894, Lord Rayleigh already expounded on the significance of system decoupling. Since then, the problem has attracted the attention of many researchers.;Mathematically, the system of differential equations is defined by three coefficient matrices. The equations are coupled unless all three matrices are diagonal. The "classical decoupling problem" is thus equivalent to the problem of simultaneous con- version of the coefficient matrices into diagonal forms. Current theory emphasizes simultaneous diagonalization of the coefficient matrices by equivalence or similarity transformations. However, it has been shown that no time-invariant linear trans- formations will decouple every second-order system. Even partial decoupling, i.e. simultaneous conversion of the coefficient matrices into upper triangular forms, is not ensured with time-invariant linear transformations.;The purpose of this work is to present a general method and algorithm to de- couple any second-order linear system (possessing symmetric and non-symmetric co- efficients). The theory exploits the parameter "time," characteristic of a dynamical system. The decoupling is achieved by a real, invertible, but generally nonlinear map- ping. This mapping simplifies to a real, linear time-invariant transformation when the coefficient matrices can be simultaneously diagonalized by a similarity transformation. A state-space reformulation of the mapping is also derived. In homogeneous systems the configuration-space decoupling transformation is real, linear and time-invariant when cast in state space. In non-homogeneous systems, both the configuration and associated state transformations are nonlinear and depend continuously on the excitation. The theory is illustrated by several numerical examples. Two applications in earthquake engineering demonstrate the utility of the decoupling approach.
机译:线性二阶常微分方程是由牛顿第二定律和胡克定律共同产生的,在机械和土木工程中无处不在。也许最突出的例子是一个数学模型,该模型用于粒子围绕其平衡位置的小振动。但是,二阶系统也可以在化学工程,结构动力学,线性系统理论甚至经济学等不同领域中找到应用。大型二阶系统出现在例如通过有限元方法对复杂结构进行数学建模的过程中;通常,任何二阶方程组都是耦合的。每个方程式与其至少一个邻域相关联,并且方程式之一的解需要所有方程式的解。 “经典解耦问题”与消除线性动力系统中的坐标耦合有关。解耦将方程组转换为相互独立的方程组,这样就可以在不求解任何其他方程的情况下求解每个方程。在1894年的“声音理论”中,瑞利勋爵已经阐述了系统去耦的重要性。从那以后,这个问题引起了许多研究者的注意。在数学上,微分方程组由三个系数矩阵定义。除非所有三个矩阵都是对角线的,否则方程是耦合的。因此,“经典解耦问题”等同于将系数矩阵同时转换为对角线形式的问题。当前的理论强调通过等价或相似变换对系数矩阵同时进行对角化。但是,已经证明没有时不变的线性变换将解耦每个二阶系统。时不变线性变换甚至不能保证部分去耦,即将系数矩阵同时转换为上三角形式。这项工作的目的是提出一种解耦任何二阶线性系统的通用方法和算法。 (具有对称和非对称系数)。该理论利用了动力学系统的特征参数“时间”。去耦是通过真实的,可逆的但通常是非线性的映射实现的。当系数矩阵可以通过相似变换同时对角化时,此映射简化为真实的线性时不变变换。还导出了映射的状态空间重构。在齐次系统中,当在状态空间中进行转换时,配置空间去耦变换是真实的,线性的并且是时不变的。在非均匀系统中,配置和相关的状态转换都是非线性的,并且连续取决于激励。几个数值示例说明了该理论。地震工程中的两个应用展示了去耦方法的实用性。

著录项

  • 作者

    Morzfeld, Matthias.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 57 p.
  • 总页数 57
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号