首页> 外文学位 >Towards a better understanding of the mechanisms controlling the durability of FRP composites in concrete.
【24h】

Towards a better understanding of the mechanisms controlling the durability of FRP composites in concrete.

机译:为了更好地理解控制FRP复合材料在混凝土中耐久性的机理。

获取原文
获取原文并翻译 | 示例

摘要

Wide adoption by the construction industry of Fibre Reinforced Polymer (FRP) rebars - a relatively recent construction material that offers numerous advantages of corrosion resistance, higher strength, lighter weight, etc. over conventional reinforcing materials for concrete, such as steel - is at least partially impeded due to a lack of an effective long term in-service performance prediction model and relatively high initial costs. A reliable service life prediction model for FRP composites in concrete depends on a clear understanding of the transport mechanisms of potentially harmful chemical species into the FRP composites and their subsequent contribution to any potentially active degradation mechanism(s).;To identify which mechanisms control the degradation of Glass Fibre Reinforced Polymers (GFRP) in alkaline environments, GFRP rebars were immersed into simulated concrete pore solutions and subjected to accelerated ageing tests (Phase 1). The conditioned samples were analyzed by various electron microscopy (SEM, EDS) and spectroscopic methods (FTIR). Analyses of these tests revealed that fibre-matrix debonding took place in few samples exposed to 75 °C (the highest temperature considered in this study), and tested after one year, despite the fact that the glass fibres and polymer matrix remained essentially intact and that no penetration of alkalis into the GFRP rebars was observed. Hence, this study shows that the Vinyl Ester (VE) polymer matrix used acts as an effective semi-permeable membrane by allowing the penetration of water while blocking alkali ions. The findings showing that most of the damage seems to be confined to the fibre-matrix interphase (or interface), under the considered test conditions, stimulated an investigation on the effects of sizing on the strength retention and water up-take of GFRP rebars in Phase 2 of the testing program.;In order to study the effects of sizing on the properties of GFRP rebars, GFRP custom plane sheets with sized and desized glass fibers were produced and exposed to deionized water at 4 °C, 23 °C, and 50 °C. Irrespective of sample types, the tensile strength decreased with temperature while the mass gain and moisture diffusivity increased with temperature. However, the sized samples showed a similar mass gain behavior as the desized ones, at the same exposure environment. This study confirms that sizing in GFRP custom plane sheets contributes not only to the initial strength of the composite by enhancing the adhesion between the glass fibre and a matrix, but also to the strength retention (i.e., durability) when exposed to harsh environments.;The experiments of Phase 2 were carried out at 100% relative humidity (RH). However, field service conditions vary with respect to RH and temperature for GFRP composites in concrete. Therefore, a further study was conducted to investigate the effects of RH and temperature on the properties of GFRP rebars in Phase 3.;The effects of RH were investigated by exposing GFRP rebars to nine RH environments (9%-100%) while monitoring mass changes during drying and wetting. Moreover, the thermal effects of GFRP rebars on water uptake in deionized water at 4 °C, 23 °C, and 50 °C were studied and compared with those for GFRP custom plane sheets. The effects of RH on drying and wetting for GFRP rebars exhibited a hysteretic behavior. The percent of mass gain at 100% RH showed a significant difference from that in other RH environments. Mass gain and moisture diffusivity were found to increase for both rebars and custom sheets with increasing temperature. A typical Fickian behaviour of water absorption was observed for both types of samples at all exposure conditions, except the GFRP rebars at higher temperatures (starting at 50 °C) which showed non-Fickian behaviour for water absorption. The dependence of the diffusion coefficient on temperature was found to follow the Arrhenius equation. (Abstract shortened by UMI.)
机译:至少在建筑行业中,纤维增强聚合物(FRP)钢筋至少是一种相对较新的建筑材料,与传统的混凝土钢筋增强材料(如钢)相比,该材料具有耐蚀性,更高的强度,更轻的重量等诸多优点。部分原因是缺乏有效的长期在役绩效预测模型和相对较高的初始成本。混凝土中FRP复合材料可靠的使用寿命预测模型取决于对潜在有害化学物质向FRP复合材料中的迁移机理及其对任何潜在的活性降解机理的后续贡献的清晰理解。由于玻璃纤维增​​强聚合物(GFRP)在碱性环境中会降解,因此将GFRP钢筋浸入模拟的混凝土孔隙溶液中并进行加速老化测试(阶段1)。通过各种电子显微镜(SEM,EDS)和光谱法(FTIR)分析条件样本。对这些测试的分析表明,尽管玻璃纤维和聚合物基质基本上保持完好无损,并且暴露于75°C(本研究中考虑的最高温度)的样品很少发生纤维基质剥离,并在一年后进行了测试。没有观察到碱渗透到GFRP钢筋中。因此,这项研究表明,所使用的乙烯基酯(VE)聚合物基质通过允许水渗透而同时阻止碱离子的作用,可以充当有效的半透膜。结果表明,在考虑的测试条件下,大多数损坏似乎仅限于纤维-基体相间(或界面),这刺激了对上浆对GFRP钢筋的强度保持率和吸水率的影响的研究。测试程序的第2阶段。为了研究施胶对GFRP钢筋性能的影响,生产了具有玻璃纤维大小和尺寸的GFRP定制平面板,并将其暴露在4°C,23°C和50°C。不论样品类型如何,抗拉强度均随温度降低,而质量增加和水分扩散率随温度升高。但是,在相同的暴露环境下,经筛分的样品显示出与经筛分的样品相似的质量增加行为。这项研究证实,在GFRP定制平面板材上施胶,不仅可以通过增强玻璃纤维与基体之间的粘合力来提高复合材料的初始强度,而且还可以提高其在恶劣环境下的强度保持率(即耐久性)。阶段2的实验是在100%相对湿度(RH)下进行的。但是,混凝土中GFRP复合材料的现场服务条件相对于RH和温度而言会有所不同。因此,进行了进一步的研究,以研究相对湿度和温度对第3阶段GFRP钢筋性能的影响;通过在监测质量的同时将GFRP钢筋暴露于9个RH环境(9%-100%)中来研究RH的影响。在干燥和润湿过程中发生变化。此外,研究了GFRP钢筋对去离子水在4°C,23°C和50°C下的吸水率的热效应,并将其与GFRP定制平板的热效应进行了比较。 RH对GFRP钢筋干燥和润湿的影响表现出滞后行为。在100%相对湿度下的质量增加百分比显示出与其他相对湿度环境下的显着差异。发现随着温度的升高,钢筋和定制板材的质量增益和水分扩散率均增加。在所有暴露条件下,两种类型的样品均观察到典型的Fickian吸水行为,除了GFRP钢筋在较高温度(从50°C开始)显示出非Fickian吸水行为外。发现扩散系数对温度的依赖性遵循Arrhenius方程。 (摘要由UMI缩短。)

著录项

  • 作者

    Kamal, Abu Sayed Md.;

  • 作者单位

    The University of Saskatchewan (Canada).;

  • 授予单位 The University of Saskatchewan (Canada).;
  • 学科 Engineering Civil.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 220 p.
  • 总页数 220
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号