首页> 外文学位 >Simulation of Myocardium Motion and Blood Flow in the Heart with Fluid-structure Interaction
【24h】

Simulation of Myocardium Motion and Blood Flow in the Heart with Fluid-structure Interaction

机译:流固耦合模拟心肌运动和心脏血流

获取原文
获取原文并翻译 | 示例

摘要

The heart is a complex organ and much is still unknown about its mechanical function. In order to use simulations to study heart mechanics, fluid and solid components and their interaction should be incorporated into any numerical model. Many previous studies have focused on myocardium motion or blood flow separately, while neglecting their interaction. Previous fluid-structure interaction (FSI) simulations of heart mechanics have made simplifying assumptions about their solid models, which prevented them from accurately predicting the stress-stain behaviour of the myocardium. In this work, a numerical model of the canine left ventricle (LV) is presented, which serves to address the limitations of previous studies. A canine LV myocardium material model was developed for use in conjunction with a commercial finite element code. The material model was modified from its original form to make it suitable for use in simulations. Further, numerical constraints were imposed when calculating the material parameter values, to ensure that the model would be strictly convex. An initial geometry and non-zero stress state are required to start cardiac cycle simulations. These were generated by the static inflation of a passive LV model to an end-diastolic pressure. Comparisons with previous measurements verified that the calculated geometry was representative of end diastole. Stresses calculated at the specified end diastolic pressure showed complex spatial variations, illustrating the superiority of the present approach over a specification of an arbitrary stress distribution to an end-diastolic geometry. In the third part of this study, FSI simulations of the mechanics of the LV were performed over the cardiac cycle. Calculated LV cavity pressures agreed well with previous measurements during most of the cardiac cycle, but deviated from them during rapid filling, which resulted in non-physiological backflow. This study is the first one to present a detailed analysis of the temporal and spatial variations of the properties of both the solid and the fluid components of the canine LV. The observed development of non-uniform pressure distributions in the LV cavity confirms the advantage of performing FSI simulations rather than imposing a uniform fluid pressure on the inner surface of the myocardium during solid-only simulations.
机译:心脏是一个复杂的器官,其机械功能仍然未知。为了使用模拟研究心脏力学,流体和固体成分及其相互作用,应将其纳入任何数值模型。先前的许多研究都将注意力集中在心肌运动或血流上,而忽略了它们的相互作用。以前的心脏力学的流体-结构相互作用(FSI)模拟已经简化了关于其实体模型的假设,这使他们无法准确预测心肌的应力-染色行为。在这项工作中,提出了犬左心室(LV)的数值模型,用于解决先前研究的局限性。开发了犬LV心肌材料模型,以与商业有限元代码结合使用。对该材料模型进行了修改,使其适合于模拟。此外,在计算材料参数值时施加了数值约束,以确保模型严格凸出。开始心动周期模拟需要初始几何形状和非零应力状态。这些是由被动LV模型的静态充气至舒张末期压力产生的。与之前的测量结果进行比较,验证了所计算的几何形状代表舒张末期。在指定的舒张末期压力下计算出的应力显示出复杂的空间变化,说明了本方法相对于舒张末期几何形状的任意应力分布的规范的优越性。在这项研究的第三部分中,在整个心动周期中进行了LV力学的FSI模拟。在大多数心动周期中,计算出的左室腔压力与先前的测量结果吻合得很好,但在快速充盈过程中却偏离了先前的测量值,从而导致非生理性回流。这项研究是第一个对犬LV的固体和流体成分的特性在时间和空间上变化进行详细分析的研究。观察到的LV腔内压力分布不均匀的发展证实了进行FSI模拟的优势,而不是在仅进行固体模拟时在心肌内表面施加均匀的流体压力。

著录项

  • 作者

    Doyle, Matthew Gerard.;

  • 作者单位

    University of Ottawa (Canada).;

  • 授予单位 University of Ottawa (Canada).;
  • 学科 Mechanical engineering.;Biomedical engineering.;Biomechanics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 273 p.
  • 总页数 273
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号