首页> 外文学位 >Carbon and nitrogen cycling under conservation and conventional tillage in peanut and collard agroecosystems.
【24h】

Carbon and nitrogen cycling under conservation and conventional tillage in peanut and collard agroecosystems.

机译:花生和羽衣甘蓝农业生态系统在养护和常规耕作下的碳氮循环。

获取原文
获取原文并翻译 | 示例

摘要

Although there has been considerable adoption of conservation tillage by agronomic and vegetable producers in the US, information on nutrient release from organic residues is lacking. Information on release of nutrients from organic residues will help producers make informed decisions regarding residue management, including adoption of conservation or conventional tillage. The objectives of this study were: (1) to assess mass loss rates and carbon (C) and nitrogen (N) release rates from organic residues (organic mulches, peanut (Arachis hypogaea), and summer cover crops) under conventional and conservation tillage, and (2) to determine changes in soil C and N, aggregate stability, and yield during no-till herbicide-free collard (Brassica oleracea L. var. Champion) production using high biomass cover crops and organic mulches over a three year period.;The collard study was conducted during 2005-2008 in eastern central Alabama, USA. A summer cover crop of forage soybean (Glycine max (L.) Merr. cv. Derry) or no summer cover crop control were established into killed winter rye (Secale cereale L. cv. Elbon) residue. Collards were transplanted into killed summer residue in the fall, followed by mulching with in situ organic residues three weeks later and fertilized with 202 kg N ha-1. Mulches applied at 6.7 Mg ha-1 yr-1 did not mineralize nutrients in sufficient quantities to meet collard demands after three years, although the crop appeared healthy. All treatments, including controls, improved soil organic C in the 0-5 cm soil depth over three years. At the end of three years, treatments did not affect collard yield or aggregate stability compared to the control.;Mulch decomposition studies of mimosa (Albizia julibrissin Durazz.), lespedeza (Lespedeza cuneata (Dum. Cours.) G. Don), oat (Avena sativa) straw, and soybean (Glycine max var. Stonewall) residues were conducted using litterbag methodology and applied at a rate equivalent to 6.7 Mg ha-1 during 2007-2008 in eastern central Alabama, USA. Buried residues decomposed faster than surface residues, particularly in the labile portion. More N was potentially available to spring crops from surface residues, which may act as a slow release fertilizer, compared to incorporated residues. At spring planting, mimosa residue contained 78 kg N ha-1 when buried the previous fall, compared to 123 kg N ha-1 when left on the soil surface. Surface placed mimosa mineralized 33% of initial N content after one year, compared to 71% when buried. Similarly, C was sequestered for longer periods when residue was placed on the surface compared to incorporation. Aboveground soybean residue decomposed too quickly to warrant a N credit to subsequent crops. However, organic residues with an intermediate C:N ratio may be utilized under conservation tillage for the enhancement of soil organic matter (SOM), C sequestration, and soil N status.;Peanut residue decomposition studies were conducted at Rocky Mount, NC and Headland, AL, USA using litterbag methodology at a rate equivalent to 3.5 Mg ha-1 during 2004-2005. Residues of three peanut varieties were buried and surface-placed at both locations. In NC, buried residues mineralized N at higher rates than surface residues during the initial 50 days of decomposition. After the initial rapid phase of decomposition, there was no difference in rates of N release at either location. No treatment differences were found at the Wiregrass Experiment Station. These data suggest that N is released too quickly from peanut residue to warrant N credits to subsequent crops. This conclusion was supported by a laboratory microlysimeter incubation study conducted on the same three peanut varieties on a Dothan soil.
机译:尽管在美国,农艺和蔬菜生产者已大量采用保护性耕作法,但缺乏有关有机残留物释放养分的信息。有关从有机残留物中释放养分的信息将帮助生产者做出有关残留管理(包括采用保护或传统耕作)的明智决定。这项研究的目的是:(1)在常规耕作和保护性耕作下,评估有机残留物(有机覆盖物,花生(花生)和夏季覆盖作物)的质量损失率以及碳(C)和氮(N)释放率(2)使用高生物量覆盖作物和有机覆盖物,在三年期间确定免耕免除无花甘蓝(甘蓝)的土壤中碳和氮,团聚体稳定性和产量的变化。;该项研究于2005年至2008年在美国阿拉巴马州中部东部进行。将夏季饲用大豆(Glycine max(L.)Merr。cv。Derry)的农作物或未进行夏季覆盖农作物的控制的冬小麦(Secale graine L. cv。Elbon)残留物建立起来。秋季将散叶甘兰移植到杀死的夏季残留物中,三周后与原位有机残留物一起覆盖,并用202 kg N ha-1施肥。尽管农作物看起来很健康,但施用6.7 Mg ha-1 yr-1的覆盖物后,三年后仍未矿化足够的养分,无法满足羽衣甘蓝的需求。三年内,包括对照在内的所有处理均改善了0-5 cm土壤深度的土壤有机碳。与对照组相比,三年结束时,处理对羽衣甘蓝产量或骨料稳定性没有影响。含羞草(Albizia julibrissin Durazz。),lespedeza(Lespedeza cuneata(Dum。Cours。)G. Don),燕麦的腐烂分解研究在美国阿拉巴马州中部东部,使用垃圾袋方法进行了秸秆残留和大豆残留残留量的研究,施用量相当于6.7 Mg ha-1。埋藏的残渣比表面残渣分解得更快,尤其是在不稳定部分。与掺入的残留物相比,地表残留物可能会为春季作物提供更多的氮,这些残留物可作为缓释肥料。在春季播种时,含羞草残渣在前一个秋天埋葬时的含氮量为78 kg N ha-1,而留在土壤表面时的含氮量为123 kg N ha-1。一年后,表面含羞草矿化了初始氮含量的33%,而埋藏时为71%。类似地,与掺入相比,当将残留物置于表面上时,C被螯合了更长的时间。地上大豆残留物分解得太快,以至于不能保证后续作物获得N信用。但是,在耕作耕作中可以使用具有中等C:N比例的有机残留物,以增强土壤有机质(SOM),固碳和提高土壤N的状况。在北卡罗来纳州落基山和岬角进行了花生残留物分解研究,美国阿拉巴马州,在2004-2005年期间使用垃圾袋方法的速率相当于3.5 Mg ha-1。将两个花生品种的残留物埋在两个表面上并进行表面放置。在NC中,在分解的最初50天中,地下残留物矿化N的速率高于表面残留物。在最初的快速分解阶段之后,两个位置的氮释放速率均没有差异。在Wiregrass实验站没有发现处理差异。这些数据表明,花生残渣中氮的释放速度过快,以至于无法保证后续作物获得氮素。该结论得到了在多森(Dothan)土壤上对相同的三个花生品种进行的实验室微分仪孵化研究的支持。

著录项

  • 作者

    Mulvaney, Michael J.;

  • 作者单位

    Auburn University.;

  • 授予单位 Auburn University.;
  • 学科 Agriculture Agronomy.;Agriculture Soil Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 190 p.
  • 总页数 190
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号