首页> 外文学位 >Numerical studies of steady flows past a circular cylinder bounded with endplates.
【24h】

Numerical studies of steady flows past a circular cylinder bounded with endplates.

机译:稳定流通过端板为边界的圆柱体的数值研究。

获取原文
获取原文并翻译 | 示例

摘要

Steady incompressible flow past an infinitely long circular cylinder has been a classical problem of fluid mechanics for more than a century. As the cylinder diameter D and the viscous diffusion distance δ D (= nD/U which is the maximum boundary layer thickness) are the only two length scales involved, the problem is governed by one parameter, the length scale ratio, i.e., Reynolds number ReD = (D/δ D)2 = U D/ν, where U is the flow velocity at far away and ν the kinematic viscosity of fluid. However, the cylinder is always of finite length in practice. In experiments, flat plates are usually attached to the cylinder ends to prohibit the disturbance of crossflows. As a result, two new geometric parameters are added to this problem. They are the cylinder length aspect ratio H/R and endplate aspect ratio Ro/R, where H is the half cylinder length, Ro the endplate radius and R (=D/2) the cylinder radius.; In the present study, 3D numerical simulations on flows past a circular cylinder of infinite length and of finite length with endplates were performed. For infinitely long cylinder (H/R → ∞), periodic boundary condition was used for the spanwise direction when a finite computation domain is adopted. The simulation results have basically recaptured the 2D flow behaviors at low Reynolds number such as formation of vortex bubble behind the cylinder and the 2D vortex shedding, and those at moderate Reynolds number such as 3D vortex shedding. These 3D simulations of flows past an infinitely long cylinder provide not only a rigorous validation of the code, but also serve as the database for comparison of the later results of finite H/R.; For the finite cylinder with endplates, the 3D simulations were performed by varying Reynolds number and cylinder aspect ratio, with the endplate aspect ratio fixed at Ro/R = 50. Due to the requirement of long computation time for turbulent wake at high Reynolds number, only laminar flows at low and intermediate ReD, with H/R ranging from 0.005 to 50 from Hele-Shaw flows to flows with vortex shedding, were reported in this thesis (Results of turbulent wake for high ReD will be reported in a subsequent report). Even though, a wide variety of 3D flow phenomena are encountered. These include the 3D patterns of Hele-Shaw flow, helical motion in the steady vortex bubbles, and beating phenomenon and vortex dislocations during vortex shedding. Furthermore, the associated forces, i.e., the drag and lift forces on the cylinder and the shear stress distribution on the endplate, are also discussed.
机译:超过一个世纪以来,流经无限长圆柱体的不可压缩的稳定流动一直是流体力学的经典问题。圆柱体直径 D 和粘性扩散距离δ D (= n D / U 是最大的边界层厚度)是唯一涉及的两个长度尺度由一个参数长度标度比控制,即雷诺数 Re D =( D /δ D 2 = U D /ν,其中 U 是远处的流速,ν是流体的运动粘度。然而,在实践中,圆柱体总是具有有限的长度。在实验中,通常将平板连接到气缸端部,以防止干扰横流。结果,两个新的几何参数被添加到此问题。它们是圆柱长度长宽比 H / R 和端板长宽比 R o / R ,其中 H 是半圆柱长度, R o 终板半径和 R (= D / 2)圆柱半径。在本研究中,对通过无限长和带有端板的无限长圆柱体的流动进行了3D数值模拟。对于无限长圆柱( H / R →∞),当采用有限计算域时,在展向方向上使用周期性边界条件。仿真结果基本上重新捕获了在低雷诺数下的二维流动行为,例如在圆柱体后面形成的涡流气泡和二维涡旋脱落,以及在中等雷诺数下的二维流动行为,例如3D涡旋脱落。这些通过无限长圆柱体的流动的3D模拟不仅提供了严格的代码验证,而且还用作比较后来的 H / R 结果的数据库。对于带有端板的有限圆柱体,通过改变雷诺数和圆柱体的长宽比进行3D模拟,并将端板的长宽比固定为 R o / R < / italic> =50。由于高雷诺数下湍流唤醒需要较长的计算时间,因此只有在 Re D 的中低层流才需要本文报道了从Hele-Shaw流到具有涡旋脱落流的H / R 在0.005到50之间(高 Re D 将在后续报告中报告)。即使如此,也会遇到各种各样的3D流现象。其中包括Hele-Shaw流动的3D模式,稳定涡旋气泡中的螺旋运动以及涡旋脱落过程中的跳动现象和涡旋位错。此外,还讨论了相关的力,即在圆柱体上的阻力和提升力以及在端板上的剪应力分布。

著录项

  • 作者

    Kwan, Man Kim.;

  • 作者单位

    Hong Kong University of Science and Technology (People's Republic of China).;

  • 授予单位 Hong Kong University of Science and Technology (People's Republic of China).;
  • 学科 Engineering Mechanical.; Engineering Aerospace.; Engineering Civil.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;航空、航天技术的研究与探索;建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号