首页> 外文学位 >Fracture in stress engineered, high density, thin film interconnects.
【24h】

Fracture in stress engineered, high density, thin film interconnects.

机译:应力工程,高密度薄膜互连中的断裂。

获取原文
获取原文并翻译 | 示例

摘要

The micro-contact spring is a new technology that is based on physically vapor deposited thin film cantilevers with a purposely-imposed stress gradient through the thickness of the film. These “springs” have the potential to meet the long and near term high-density packaging and probing challenges, as outlined by the International Technology Roadmap for Semiconductors. The success of this technology is, in part, dependent on the ability to create springs that are reliable against interfacial fracture during fabrication, microelectronic probing, and microelectronic packaging applications. Through this research, a framework to understand the interfacial integrity of thin film cantilevers under monotonic and cyclic loading has been established.; This research has developed a modified decohesion test (MDT) that eliminates the shortcomings of current interfacial fracture toughness measurement methods for thin film interfaces. This highly flexible and robust test gives tight bounds on the fracture toughness using a single sample, generates any mode mix, creates an interface representative of microelectronic or MEMS applications, and remains in the linear elastic fracture mechanics regime. The MDT was applied to investigate the interfacial fracture toughness of two material systems relevant to micro-contact spring applications: titanium/silicon and titanium/Al 2O3. A von Karman Plate Theory (VKPT) based analytical method was applied and further enhanced in this research to analytically model the large, nonlinear behavior of intrinsically stressed, thin film, cantilever strips. The multilayer analytical approach, based on simply supported plates, was shown to predict the energy release rate of cantilevered strips during monotonic fracture remarkably well and showed the importance of bifurcation of curvature in understanding the nonlinear behavior of intrinsically stressed thin film cantilever plates. A framework for numerical modeling of micro-contact springs in fabrication, packaging, and probing applications was developed in this research. Based on the these models, the VKPT analytical framework, and the interfacial fracture toughness measured through the MDT, comprehensive design guidelines were established to achieve micro-contact spring fabrication design goals and ensure continuing reliability in subsequent probing and free-air packaging applications.
机译:微接触弹簧是一项新技术,其基于物理气相沉积的薄膜悬臂,并有意施加贯穿薄膜厚度的应力梯度。正如国际半导体技术路线图所概述的那样,这些“弹簧”有可能满足长期和近期的高密度封装和探测挑战。该技术的成功部分取决于制造弹簧的能力,该弹簧在制造,微电子探测和微电子封装应用过程中可靠地抵抗界面断裂。通过这项研究,建立了一个框架来理解薄膜悬臂在单调和循环载荷下的界面完整性。这项研究开发了一种改进的脱粘试验(MDT),该试验消除了当前用于薄膜界面的界面断裂韧性测量方法的缺点。这种高度灵活且坚固的测试使用单个样品即可给出断裂韧性的严格界限,生成任何模式混合,创建代表微电子或MEMS应用的界面,并保持线性弹性断裂力学状态。 MDT被用于研究与微接触弹簧应用相关的两种材料系统的界面断裂韧性:钛/硅和钛/ Al 2 O 3 。基于von Karman板理论(VKPT)的分析方法在本研究中得到了应用并得到了进一步增强,以对固有应力,薄膜,悬臂带的大型非线性行为进行分析建模。多层分析方法基于简单支撑的板,可以很好地预测单调断裂过程中悬臂带的能量释放速率,并显示了曲率分叉在理解固有应力薄膜悬臂板的非线性行为方面的重要性。在这项研究中,开发了用于制造,包装和探测应用中的微接触弹簧数值建模的框架。基于这些模型,VKPT分析框架以及通过MDT测量的界面断裂韧性,建立了全面的设计指南,以实现微接触弹簧制造设计目标,并确保在后续探测和自由包装应用中的持续可靠性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号