首页> 外文学位 >The physical-chemical basis behind FGFR activation: Implications for human pathologies.
【24h】

The physical-chemical basis behind FGFR activation: Implications for human pathologies.

机译:FGFR激活背后的物理化学基础:对人类病理学的影响。

获取原文
获取原文并翻译 | 示例

摘要

Fibroblast growth factor receptors (FGFRs), members of the receptor tyrosine kinase (RTK) family, play critical roles in cell signal transduction. Overall, FGFRs, like other RTKs, transduce signals via a process involving lateral dimerization, ligand binding, phosphorylation and stimulation of downstream signaling cascades. Recent decades have witnessed a progress in understanding FGFR signaling pathways. However, the mechanism behind FGFR activation is yet to be fully understood.;In this project, we seek to understand the underlying physical-chemical basis behind FGFR3 activation and to elucidate its implications for human pathology, by utilizing quantitative measurements and mathematical modeling of interactions and activation of full-length FGFR3 in mammalian cellular membranes.;We first investigated the effect of the A391E mutation on FGFR3 activation in the absence of ligand. This transmembrane domain mutation is the molecular cause for Crouzon syndrome with Acanthosis Nigricans. Here, we compared the mutant activation with the wild-type in the absence of ligand. The results show that the mutation enhances the ligand-independent activation propensity of the receptor by -1.7kcal/mol. This value is consistent with the observed strength of hydrogen bonds in biological membranes, and supports the hypothesis that the mutation causes overactivation of the receptor, possibly through a hydrogen-bonding mediated stabilization mechanism, and thus leads to the pathology.;We then addressed the specificity of the biological responses mediated by different fgf-FGFR pairs. In particular, we studied, analyzed and compared the activation of FGFR3 over a wide range of fgf1 and fgf2 concentrations. We found that while the strength of fgf2 binding to FGFR3 is lower than the strength of fgf1 binding, the fgf2-bound dimers exhibit higher phosphorylation of critical tyrosines in the activation loop. As a result, fgf1 and fgf2 elicit a similar FGFR3 response at low, but not at high, concentrations. The results demonstrate the versatility of FGFR3 response to fgf1 and fgf2, and highlight the complexity in fgf signaling.;Finally, we investigated the effect of the A391E mutation in the presence of ligand. We compared the responses of mutant and wild-type receptors to fgf1 and fgf2 over a wide range of ligand concentrations. With the assistance of mathematical modeling, we extracted parameters describing ligand-induced activation. The results show that the A391E mutation enhances FGFR3 activation through a combined mechanism involving enhanced dimerization propensity and increased phosphorylation probability, but has no effect on ligand binding. The work reveals that a single mutation might cause multiple effects that contribute to the pathology.;We successfully applied quantitative methodologies to study full-length FGFR activation in mammalian cell membranes. The ability to carry out such measurements can shed light on ligand binding specificity and on the pathology mechanism due to mutations occurring in RTKs. This research could aid the development of treatments for RTK-linked diseases and could provide guidance for targeted therapeutic inhibitor design.
机译:成纤维细胞生长因子受体(FGFRs)是受体酪氨酸激酶(RTK)家族的成员,在细胞信号转导中起关键作用。总体而言,FGFR与其他RTK一样,通过涉及横向二聚化,配体结合,磷酸化和刺激下游信号级联的过程来转导信号。最近几十年见证了在了解FGFR信号通路方面的进展。然而,FGFR激活的机制尚未完全了解。;在本项目中,我们试图通过利用相互作用的定量测量和数学建模来了解FGFR3激活背后的潜在物理化学基础,并阐明其对人类病理学的影响。哺乳动物细胞膜中全长FGFR3的活化和激活。;我们首先研究了在不存在配体的情况下A391E突变对FGFR3活化的影响。这种跨膜结构域突变是黑棘皮病与克鲁佐综合征的分子原因。在这里,我们在没有配体的情况下将突变型激活与野生型进行了比较。结果表明,该突变将受体的配体非依赖性激活倾向提高了-1.7kcal / mol。该值与观察到的生物膜中氢键的强度一致,并支持以下假设,即突变可能通过氢键介导的稳定机制导致受体的过度活化,从而导致病理。由不同的fgf-FGFR对介导的生物学反应的特异性。特别是,我们研究,分析和比较了在宽范围的fgf1和fgf2浓度下FGFR3的激活。我们发现,虽然fgf2与FGFR3结合的强度低于fgf1结合的强度,但fgf2结合的二聚体在激活环中显示出更高的关键酪氨酸磷酸化。结果,fgf1和fgf2在低浓度(而不是高浓度)下会引发相似的FGFR3响应。结果证明了FGFR3对fgf1和fgf2应答的多功能性,并突出了fgf信号转导的复杂性。最后,我们研究了配体存在下A391E突变的影响。我们比较了突变体和野生型受体对fgf1和fgf2在广泛的配体浓度范围内的反应。在数学建模的帮助下,我们提取了描述配体诱导的活化的参数。结果表明,A391E突变通过涉及增强的二聚化倾向和增加的磷酸化概率的组合机制增强了FGFR3活化,但对配体结合没有影响。这项工作揭示了单个突变可能引起多种影响病理的作用。;我们成功地应用了定量方法研究哺乳动物细胞膜中的全长FGFR激活。进行此类测量的能力可以阐明配体结合特异性以及由于RTK中发生突变而引起的病理机制。这项研究可以帮助开发与RTK相关的疾病的治疗方法,并可以为靶向治疗抑制剂的设计提供指导。

著录项

  • 作者

    Chen, Fenghao.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Physical chemistry.;Biochemistry.;Molecular biology.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号