首页> 外文学位 >Massively parallel algorithms for CFD simulation and optimization on heterogeneous many-core architectures.
【24h】

Massively parallel algorithms for CFD simulation and optimization on heterogeneous many-core architectures.

机译:大规模并行算法,用于异构多​​核架构上的CFD仿真和优化。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation we provide new numerical algorithms for use in conjunction with simulation based design codes. These algorithms are designed and best suited to run on emerging heterogenous computing architectures which contain a combination of traditional multicore processors and new programmable many-core graphics processing units (GPUs). We have developed the following numerical algorithms (i) a new Multidirectional Search (MDS) method for PDE constrained optimization that utilizes a Multigrid (MG) strategy to accelerate convergence, this algorithm is well suited for use on GPU clusters due to its parallel nature and is more scalable than adjoint methods (ii) a new GPU accelerated point implicit solver for the NASA FUN3D code (unstructured Navier-Stokes) that is written in the Compute Unified Device Architecture (CUDA) language, and which employs a novel GPU sharing model, (iii) novel GPU accelerated smoothers (developed using PGI Fortran with accelerator compiler directives) used to accelerate the multigrid preconditioned conjugate gradient method (MGPCG) on a single rectangular grid, and (iv) an improved pressure projection solver for adaptive meshes that is based on the MGPCG method which requires fewer grid point calculations and has potential for better scalability on hetergeneous clusters. It is shown that a multigrid - multidirectional search (MGMDS) method can run up to 5.5X faster than the MDS method when used on a one dimensional data assimilation problem. It is also shown that the new GPU accelerated point implicit solver of FUN3D is up to 5.5X times faster than the CPU version and that the solver can perform up to 40% faster on a single GPU being shared by four CPU cores. It is found that GPU accelerated smoothers for the MGPCG method on uniform grids can run over 2X faster than the non-accelerated versions for 2D problems, and that the new MGPCG pressure projection solver for adaptive grids is up to 4X faster than the previous MG algorithm.
机译:在本文中,我们提供了新的数值算法,可与基于仿真的设计代码结合使用。这些算法经过设计,最适合在新兴的异构计算架构上运行,该架构包含传统的多核处理器和新的可编程多核图形处理单元(GPU)的组合。我们已经开发了以下数值算法(i)一种用于PDE约束优化的新的多向搜索(MDS)方法,该方法利用了Multigrid(MG)策略来加速收敛,该算法由于其并行性和稳定性而非常适合在GPU集群上使用。比伴随方法更具扩展性(ii)一种新的GPU加速点隐式求解器,用于以计算统一设备架构(CUDA)语言编写的NASA FUN3D代码(非结构化Navier-Stokes),并采用了新颖的GPU共享模型, (iii)新型GPU加速平滑器(使用带有加速器编译器指令的PGI Fortran开发),用于在单个矩形网格上加速多网格预处理共轭梯度方法(MGPCG),以及(iv)改进的基于自适应网格的压力投影求解器MGCCG方法需要较少的网格点计算,并且有可能在异构群集上实现更好的可伸缩性。结果表明,在处理一维数据同化问题时,多网格多方向搜索(MGMDS)方法的运行速度比MDS方法快5.5倍。还显示出,新的FUN3D GPU加速点隐式求解器的速度比CPU版本快5.5倍,并且该求解器在由四个CPU内核共享的单个GPU上的执行速度最高可提高40%。结果发现,针对统一网格的MGPCG方法的GPU加速平滑器比非加速版本的2D问题的运行速度快2倍以上,而用于自适应网格的新型MGPCG压力投影求解器的速度比以前的MG算法快4倍。 。

著录项

  • 作者

    Duffy, Austen C.;

  • 作者单位

    The Florida State University.;

  • 授予单位 The Florida State University.;
  • 学科 Applied Mathematics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 108 p.
  • 总页数 108
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号