首页> 外文学位 >A Multi-scale Framework for Modeling Instabilities in Fluid-Infiltrated Porous Solids.
【24h】

A Multi-scale Framework for Modeling Instabilities in Fluid-Infiltrated Porous Solids.

机译:用于流体渗透的多孔固体不稳定性建模的多尺度框架。

获取原文
获取原文并翻译 | 示例

摘要

Many natural and man-made materials, such as sand, rock, concrete and bone, are multiconstituent, fluid-infiltrated porous solids. The failure of such materials is important for various engineering applications, such as CO2 sequestration, energy storage and retrieval and aquifer management as well as many other geotechnical engineering problems aimed to prevent catastrophic failures due to pore pressure build-up.;This dissertation investigates two mechanical aspects of fluid infiltrated porous media, i.e., the predictions of diffuse and localized failures of porous media and the heterogeneous microstructures developed after failures. We define failures as material conditions in which homogeneous deformation becomes unattainable.;To detect instabilities, a critical state plasticity model for sand is implemented. By seeking bifurcation points of the incremental, linearized constitutive responses, we establish local criteria that detect onsets of drained soil collapse, static liquefaction and formation of deformation bands under locally drained and undrained conditions. Fully undrained and drained triaxial compression simulations are conducted and the stability of the numerical specimens are assessed via a perturbation method.;To characterize deformation modes after failures, a multi-scale framework is designed to determine microstructural attributes from pore space extracted from X-ray tomographic images and improve the accuracy and speed of a multi-scale lattice Boltzmann/finite element hierarchical flow simulation algorithm. By comparing the microstructural attributes and macroscopic permeabilities inside and outside a compaction band formed in Aztec Sandstone, our numerical study reveals that elimination of connected pore space and increased tortuosity are the main causes that compaction bands are flow barriers.
机译:许多天然和人造材料,例如沙子,岩石,混凝土和骨头,都是多组分的,渗透流体的多孔固体。这类材料的失效对于各种工程应用至关重要,例如二氧化碳封存,能量存储和回收以及含水层管理以及旨在防止由于孔隙压力积聚而导致的灾难性失效的许多其他岩土工程问题。流体渗入多孔介质的力学方面,即对多孔介质的弥散和局部破坏的预测以及破坏后形成的非均质微观结构。我们将破坏定义为无法达到均质形变的材料条件。为了检测不稳定性,实现了砂的临界状态可塑性模型。通过寻找线性化本构反应增量的分叉点,我们建立了局部标准,以检测排水条件下排水土体塌陷,静态液化和形变带形成的情况。进行了完全不排水和排水的三轴压缩模拟,并通过扰动方法评估了数值试样的稳定性。为了表征破坏后的变形模式,设计了多尺度框架,以确定从X射线提取的孔隙空间的微观结构属性层析图像,并提高了多尺度格子Boltzmann /有限元分层流模拟算法的准确性和速度。通过比较在阿兹台克砂岩中形成的压实带内部和外部的微观结构属性和宏观渗透率,我们的数值研究表明,消除连通孔隙空间和增加曲折度是压实带成为流动障碍的主要原因。

著录项

  • 作者

    Sun, WaiChing.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Applied Mechanics.;Engineering Geological.;Engineering Civil.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 129 p.
  • 总页数 129
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号