首页> 外文学位 >Biomaterial strategies towards the development of next generation neural prosthetic devices.
【24h】

Biomaterial strategies towards the development of next generation neural prosthetic devices.

机译:开发下一代神经修复装置的生物材料策略。

获取原文
获取原文并翻译 | 示例

摘要

Despite recent advances, there are major hurdles to overcome before cortical neural prosthetics can become a viable therapeutic strategy. The injury response to the insertion of these devices results in eventual loss of recorded neuronal signal, preceded by inflammatory responses in the form of microglia, astrocyte, and macrophage aggregation at the injury site. Within days, gliosis, the glial encapsulation of the probe, excludes neurons and instigates progressive localized neurodegeneration. Variations in probe composition and designs are being investigated to enhance probe viability but the end result remains. In this work, two efforts were employed to resolve the problem of gliosis and its long-term consequences.;Strategies integrating disciplines of chemistry, biology and engineering were employed to explore methods to advance the field of invasive cortical devices. The first effort involved the development of ultrafast degrading and ultrafast resorbing polymers based on a new family of tyrosine-derived polycarbonate terpolymers. Such polymers can enable the insertion of micronized devices into brain parenchyma, and once inserted, the polymers degrade and resorb in a benign manner, thus minimizing the acute response to the injury. The clinical relevance of such materials is the ability to insert devices that are smaller than the nominal size of neuronal soma, thus possibly relieving the probe from a chronic glial response. Various polymer chemistries were synthesized and characterized in vitro. Quantified analysis of the glial and neural response to the presence of the polymer in rat brain tissue confirmed our hypothesis of reduction in glial response when ultra-fast degrading and resorbing polymers are used. The retention of recording functionality of microelectrodes coated with this polymer, and its ability to deliver anti-inflammatory agents locally to the site of insertion were quantified as well.;The second project is the development of completely new materials for use in neural electrodes. Current devices are either silicon or metal based. We developed carbon nanotube-polysaccharide composites. These materials have proven to be readily fabricated as microwires. Mechanical characterization showed the microwires are stiff when dry (allowing insertion) but soft and compliant when hydrated (for brain tissue compatibility). They are electrically conductive, and can be easily made bioactive through chemical conjugation of biologically active moieties, thus affecting cell-material interactions. The morphological, electrical, and biological properties of these novel materials were characterized for their potential to perform as neural electrodes. The effect of insertion of such materials into brain parenchyma has resulted in minimal glial response, while brain cell attachment could be altered through the conjugation of extracellular matrix proteins with the carbon nanotube-polysaccharide composite. Thus, future designs of neural prosthetics could highly benefit from the employment of such novel nanocomposites.
机译:尽管有最近的进展,但是在皮层神经假体可以成为可行的治疗策略之前,仍有许多障碍需要克服。对这些设备插入的损伤反应导致最终记录的神经元信号丢失,随后是损伤部位的小胶质细胞,星形胶质细胞和巨噬细胞聚集形式的炎症反应。数天之内,神经胶质瘤(即探针的神经胶质囊膜)将神经元排除在外,并引发进行性局部神经变性。为了提高探针的活力,正在研究探针组成和设计的变化,但最终结果仍然存在。在这项工作中,我们进行了两项工作来解决神经胶质细胞增生的问题及其长期后果。;采用了整合化学,生物学和工程学学科的策略来探索方法,以促进侵入性皮层器械领域的发展。最初的工作涉及开发基于酪氨酸衍生的聚碳酸酯三元共聚物新家族的超快降解和超快吸收聚合物。这样的聚合物可以使微粉化的装置插入脑实质,一旦插入,聚合物将以良性的方式降解和吸收,从而使对损伤的急性反应最小化。这类材料的临床意义是能够插入小于神经体躯体标称尺寸的装置,从而可能减轻探针的慢性胶质细胞反应。合成了各种聚合物化学物质并进行了体外表征。对大鼠脑组织中聚合物存在的神经胶质和神经反应的定量分析证实了我们的假设,即使用超快速降解和再吸收聚合物时神经胶质反应减少。还定量了涂覆有这种聚合物的微电极的记录功能的保留及其将抗炎剂局部递送至插入部位的能力。第二个项目是开发用于神经电极的全新材料。当前的设备是基于硅或金属的。我们开发了碳纳米管-多糖复合材料。这些材料已被证明很容易制成微线。机械特性显示,干燥时微丝坚硬(允许插入),而在水合时微软且柔顺(用于脑组织相容性)。它们是导电的,并且可以通过生物活性部分的化学缀合而容易地使其具有生物活性,从而影响细胞与材料的相互作用。这些新型材料的形态,电学和生物学特性因其作为神经电极的潜力而得到了表征。将此类材料插入脑实质的效果导致最小的神经胶质反应,而脑细胞附着可通过细胞外基质蛋白与碳纳米管-多糖复合物的偶联而改变。因此,神经假体的未来设计可能会从这种新型纳米复合材料的使用中受益匪浅。

著录项

  • 作者

    Lewitus, Dan.;

  • 作者单位

    Rutgers The State University of New Jersey and University of Medicine and Dentistry of New Jersey.;

  • 授予单位 Rutgers The State University of New Jersey and University of Medicine and Dentistry of New Jersey.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 168 p.
  • 总页数 168
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:44:36

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号