首页> 外文学位 >Synthetic routes to nanostructured carbon: Platelets, scrolls, tubes and GEMs.
【24h】

Synthetic routes to nanostructured carbon: Platelets, scrolls, tubes and GEMs.

机译:纳米结构碳的合成途径:血小板,涡旋形,管形和GEM。

获取原文
获取原文并翻译 | 示例

摘要

The future of nanotechnology depends on the synthesis of high quality nanomaterials. Metathesis and intercalation/exfoliation chemistry promise scalable and inexpensive synthetic routes to nanostructured forms of carbon. The solid-state metathesis reaction between calcium carbide (CaC2) and hexachloroethane (C2Cl6) produces crystalline graphite powder. The addition of 6 mole percent iron sulfide (FeS) catalyzes the growth of single- and multi-walled carbon nanotubes in a yield of 25%, calculated using transmission electron microscopy. By changing the catalyst and its concentration, graphite encapsulated metal (GEM) nanoparticles can be synthesized. The synthesis of graphite encapsulated iron particles has been optimized to produce high yield, high quality nanoparticles for use in magnetic composites.;Intercalation and exfoliation chemistry provide another approach to nanostructured carbon. The first-stage intercalation compound KC8 is readily formed by heating graphite powder with potassium metal at 200°C. Exfoliation using ethanol produces thin graphite nanoplatelets (GNP) in solution. Sonication of the dispersion causes the sheets to roll-up, thus forming carbon nanoscrolls, a structure analogous to multi-walled carbon nanotubes, in over 80% yield. A large volume expansion (greater than 15 fold) is observed for the dried carbon nanoscroll powder. Thermal gravimetric analysis of the carbon nanoscrolls shows a decrease in thermal stability with oxidation occurring at 450°C, 200°C less than pristine graphite.;Nanofiber composites of 1--4 weight percent graphite nanoplatlets in polyacrylonitrile (PAN) formed via electrostatic spinning demonstrate an improved Young's modulus with increasing weight percent GNP. With an aspect ratio of over 1000, the graphite nanoplatelets provide an effective means for stress transfer and serve as an excellent reinforcement for nanofiber composites.
机译:纳米技术的未来取决于高质量纳米材料的合成。复分解和插层/剥离化学有望实现可扩展且廉价的合成路线,以形成纳米结构形式的碳。电石(CaC2)和六氯乙烷(C2Cl6)之间的固态复分解反应生成结晶石墨粉末。使用透射电子显微镜计算,添加6摩尔百分比的硫化铁(FeS)可以催化单壁和多壁碳纳米管的生长,产率为25%。通过更改催化剂及其浓度,可以合成石墨封装的金属(GEM)纳米颗粒。石墨包裹的铁颗粒的合成已得到优化,可生产用于磁性复合材料的高产量,高质量纳米颗粒。插层和剥离化学为纳米结构碳提供了另一种方法。通过在200℃下将石墨粉和金属钾加热来容易地形成第一阶段的嵌入化合物KC8。使用乙醇剥离会在溶液中产生薄的石墨纳米片(GNP)。分散体的超声处理导致片材卷起,从而以超过80%的收率形成碳纳米卷,类似于纳米碳纳米管的结构。对于干燥的碳纳米卷粉,观察到大的体积膨胀(大于15倍)。碳纳米卷的热重量分析显示,在450°C时发生氧化时的热稳定性下降,比原始石墨低200°C ;;通过静电纺丝在聚丙烯腈(PAN)中以重量计1-4%的石墨纳米片的纳米纤维复合材料结果表明,随着GNP重量百分比的增加,杨氏模量得到了改善。纵横比超过1000的石墨纳米片提供了一种有效的应力转移手段,并且是纳米纤维复合材料的出色增强材料。

著录项

  • 作者

    Mack, Julia Jeannine.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Inorganic chemistry.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号