首页> 外文学位 >Molecular dynamics studies of interfacial effects on protein conformation.
【24h】

Molecular dynamics studies of interfacial effects on protein conformation.

机译:界面动力学对蛋白质构象的分子动力学研究。

获取原文
获取原文并翻译 | 示例

摘要

A better understanding of life at a microscopic level permits the formulation of better drugs, the imitation of biological processes for technological applications, and the prediction of the impact of pathogenic substances. At the heart of biological molecular processes lies the interaction of polypeptides with solvent and lipid environments; technological applications rely on the interaction of polypeptides with inorganic substrates. Molecular dynamics (MD) simulations provide a means by which these interactions may be examined in atomic-level detail, offering increasing speed and accuracy, as well as applicability to progressively larger system sizes and longer simulation times. MD techniques were applied to several systems to study interfacial effects on the conformation of proteins. The interaction of Glycophorin A transmembrane helices in a detergent (sodium dodecyl sulfate, SDS) micelle has been characterized with respect to mutations along the helix-helix interface. It is seen that destabilizing mutations result in a change to the protein structure that are fluidly accommodated by the surrounding micelle. In a long timescale (24 ns) simulation, spontaneous aggregation and organization of SDS molecules into a micelle that surrounds the GpA helix dimer and solubilizes it has been observed. The final structural properties of the system compare well to experimentally observed values, and the dynamics of the aggregation are described by a diffusion model. The simulations elucidate the interaction between GpA and its environment, showing that GpA is unstable in the aqueous environment but regains stability once surrounded by SDS. MD simulations were also used to provide an atomic-level description of the structure and surface-specific adsorption characteristics of a gold-binding protein onto Au surfaces in an aqueous environment.
机译:在微观水平上对生命的更好理解允许配制更好的药物,模仿用于技术应用的生物过程以及预测病原体的影响。生物分子过程的核心是多肽与溶剂和脂质环境的相互作用。技术应用依赖于多肽与无机底物的相互作用。分子动力学(MD)仿真提供了一种手段,可以在原子级上详细检查这些相互作用,从而提高了速度和准确性,并且适用于逐渐增大的系统尺寸和更长的仿真时间。 MD技术应用于几种系统,以研究界面对蛋白质构象的影响。在去污剂(十二烷基硫酸钠,SDS)胶束中,糖精蛋白A跨膜螺旋的相互作用已被表征为沿着螺旋-螺旋界面的突变。可以看到,不稳定的突变导致周围胶束可流体容纳的蛋白质结构发生变化。在长时间(24 ns)模拟中,已观察到SDS分子自发聚集和组织为胶束,该胶束包围GpA螺旋二聚体并使其溶解。该系统的最终结构特性与实验观察到的值相比非常好,并且聚集的动力学由扩散模型描述。该模拟阐明了GpA及其周围环境之间的相互作用,表明GpA在水性环境中不稳定,但一旦被SDS包围,便恢复了稳定性。 MD模拟还用于在水环境中对金结合蛋白在Au表面上的结构和表面特异性吸附特性进行原子级描述。

著录项

  • 作者

    Braun, Rosemary Irene.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Biophysics.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 87 p.
  • 总页数 87
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号