首页> 外文学位 >Effects of metallurgical parameters on the decomposition of pi-AlFeMgSi phase in Al-Si-Mg alloys and its influence on the mechanical properties.
【24h】

Effects of metallurgical parameters on the decomposition of pi-AlFeMgSi phase in Al-Si-Mg alloys and its influence on the mechanical properties.

机译:冶金参数对Al-Si-Mg合金中pi-AlFeMgSi相分解的影响及其对力学性能的影响。

获取原文
获取原文并翻译 | 示例

摘要

The formation of the pi-AlFeMgSi iron intermetallic phase in Al-Si-Mg alloys is known for its detrimental effect on ductility and strength, in that it is controlled by the Fe and Mg content of the alloy, as well as by the cooling rate. The current study was carried out with a view to investigating all the metallurgical parameters affecting the formation of the pi-phase iron intermetallic and, in turn, the role of the pi-phase as it relates to the tensile and impact properties of Al-Si-Mg alloys.;The effects of different solution treatment times on the decomposition of the pi-phase were investigated in order to examine how this type of decomposition affected the chemistry of the matrix itself. After 8 hours of solution heat treatment and at Mg content of 0.4wt%, the pi-phase showed complete decomposition into fine beta-phase needles. The a-phase, however, showed only partial decomposition into beta-AlFeSi phase needles at Mg levels of over 0.4%wt. This type of decomposition was examined for the purposes of this study over extended periods of solution heat treatment time in Al-7Si-0.55Mg-0.1Fe alloy samples obtained at different cooling rates in order to evaluate the mechanism of pi to beta-phase decomposition. The results obtained show that the volume fraction of pi-AlFeMgSi phase decreases significantly at prolonged solution treatment times. The highest amount of the newly-formed beta-phase was observed in the solution treatment time range of 60 to 80 hours. An analysis of the chemical composition of the matrix using wavelength-dispersive spectroscopy (WDS) at different stages of solution heat treatment revealed that the pi to beta-phase decomposition during solution heat treatment results in a distinct increase in the Mg content of the matrix. Furthermore, no changes were observed in the calculated stoichiometries of the pi-phase or the beta-phase intermetallics during solution treatment in all the alloy samples studied.;The study also investigated the decomposition of pi-AlFeMgSi into beta-phase needles during extended periods of solution heat treatment and its effects on the mechanical properties of Al-7Si-0.55Mg-0.1Fe alloys. The results obtained from the calculated quality index values show that the optimum solution treatment time for Sr-modified alloys is of the order of 12 hours. Using prolonged solution treatment time leads to the decomposition of a large amount of pi-phase into beta-phase needles, approximately 85%, thereby providing a slight improvement in the tensile properties at 80 hrs compared to standard heat treatment times; this improvement may be attributed to the increased amount of Mg in the matrix resulting from the decomposition of the pi-phase, and which is then available for precipitation as Mg2Si upon subsequent aging.;An analysis of the results obtained from the Charpy impact test using unnotched samples shows that the greatest improvement in the initiation and propagation energies is obtained for the as-cast and heat-treated alloys when these alloys are solidified at a low cooling rate and modified with strontium. An increase in the solution treatment time improves the impact properties of the alloys compared to the as-cast condition. In accordance with this finding, the recommended solution treatment time at which the maximum initiation and propagation energy values can be obtained is 20 hours for all alloys studied. The results also show that the impact properties are more sensitive to the changes occurring in the microstructure which result from solution heat treatment and Sr modification, namely, the eutectic Si and pi-phase morphologies, rather than those related to the tensile properties i.e., to the Mg content in the matrix. (Abstract shortened by UMI.);Microstructural assessment was carried out by means of quantitative metallography using electron probe microanalysis (EPMA) and scanning electron microscopy (SEM). The results indicate that increasing the Mg and Fe content increases the amount of the pi-AlMgFeSi phase formed. All the alloys containing low levels of iron regardless of the amount of Mg-content show low amounts of pi-phase iron intermetallic. The addition of trace amounts of Be has an observable effect in reducing the amount of the pi-phase formed in all the alloys studied. The pi-phase iron intermetallic particles appear to be segregated away from the modified Si in the Sr-modified alloys, particularly those solidified at a low cooling rate.
机译:已知在Al-Si-Mg合金中形成pi-AlFeMgSi铁金属间相对延展性和强度有不利影响,因为它受合金中Fe和Mg含量以及冷却速率的控制。进行当前研究的目的是调查影响pi相铁金属间化合物形成的所有冶金参数,以及pi相与Al-Si的拉伸和冲击性能有关的作用。 -Mg合金。研究了不同固溶处理时间对pi相分解的影响,以便研究这种分解如何影响基体本身的化学性质。固溶热处理8小时后,Mg含量为0.4wt%时,pi相完全分解成细的β相针状体。然而,在Mg含量超过0.4%wt的情况下,a相仅部分分解成β-AlFeSi相针。为了研究的目的,在不同的冷却速率下获得的Al-7Si-0.55Mg-0.1Fe合金样品中,在较长的固溶热处理时间范围内检查了这种类型的分解,以评估pi到β相分解的机理。所得结果表明,在延长的固溶处理时间下,pi-AlFeMgSi相的体积分数显着降低。在60至80小时的固溶处理时间范围内观察到最高量的新形成的β相。在固溶热处理的不同阶段使用波长色散光谱法(WDS)对基体的化学成分进行分析,结果表明,固溶热处理期间pi到β相的分解会导致基质Mg含量明显增加。此外,在所研究的所有合金样品中,固溶处理过程中pi相或β相金属间化合物的化学计量比均未观察到变化;该研究还研究了pi-AlFeMgSi长时间分解为β相针状体的过程。固溶处理及其对Al-7Si-0.55Mg-0.1Fe合金力学性能的影响。从计算出的质量指标值获得的结果表明,Sr改性合金的最佳固溶处理时间约为12小时。使用延长的固溶处理时间会导致大量的pi相分解为β相针,约占85%,因此与标准热处理时间相比,在80小时时的拉伸性能略有改善;这种改善可能归因于pi相分解导致基质中Mg的增加,然后在随后的时效过程中可作为Mg2Si沉淀出来;;对使用夏比冲击试验获得的结果的分析无缺口样品显示,当铸态合金和热处理合金以低冷却速率凝固并用锶改性时,它们的引发和传播能得到最大的改善。与铸态相比,固溶处理时间的增加改善了合金的冲击性能。根据这一发现,对于所有研究的合金,建议的固溶处理时间为20小时,在该时间可获得最大的初始和传播能量值。结果还表明,冲击性能对固溶热处理和Sr改性导致的微观结构变化(即共晶Si和pi相形态)更敏感,而不是与拉伸性能相关的变化(即基质中的镁含量。 (通过UMI缩短摘要。);通过定量金相分析,使用电子探针显微分析(EPMA)和扫描电子显微镜(SEM)进行显微组织评估。结果表明,增加Mg和Fe的含量会增加pi-AlMgFeSi相的形成量。不论Mg含量多低,所有含铁量低的合金都显示少量的pi相金属间铁。痕量的Be的添加在减少所有研究的合金中形成的pi相的量方面具有明显的效果。 π相铁金属间化合物颗粒似乎与Sr改性合金中的改性Si分离,特别是在低冷却速率下固化的那些。

著录项

  • 作者

    Elsharkawi, Ehab A.;

  • 作者单位

    Universite du Quebec a Chicoutimi (Canada).;

  • 授予单位 Universite du Quebec a Chicoutimi (Canada).;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号