首页> 外文学位 >Thermal and microstructure modeling of metal deposition processes with application to titanium aluminum vanadium.
【24h】

Thermal and microstructure modeling of metal deposition processes with application to titanium aluminum vanadium.

机译:金属沉积过程的热和微观结构建模及其在钛铝钒中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Laser metal deposition (LMD) offers a unique combination of process flexibility, time savings, and reduced cost in producing titanium alloy components. The current challenge in processing titanium alloys using LMD methods is understanding the complex microstructure evolution as a part is fabricated layer by layer. The current work focuses on the characterization, thermal, and microstructural modeling of multilayered Ti-6Al-4V deposits. A thermal model has been developed using finite difference techniques to predict the thermal history of LMD processes. A microstructure model that predicts the alpha phase fraction and morphology evolution was constructed to quantify the effect of thermal cycling on the as-deposited microstructure evolution. Alpha dissolution and growth are modeled assuming one-dimensional plate dissolution according to a parabolic rate law, and a Johnson-Mehl-Avrami-Kolmorgorov (JMAK) nucleation and growth model, respectively. Alpha morphology (colony-alpha and basketweave-alpha) evolution is tracked using a simplistic approach.;Characterization of the deposit has shown that a complex microstructure evolves consisting of a two distinct regions: a transient region of undeveloped microstructure and a characteristic layer that is periodically repeated throughout the deposit. The transient region contains a fine basketweave and colony-alpha morphology. The characteristic layer contains a two phase mixture of alpha + beta, with the alpha phase exhibits regions of colony-alpha (layer band) and basketweave-alpha morphology.;The different regions of microstructural contrast in the deposit are associated with thermal cycling. The thermal model results show that a heat affected zone defined by the beta transus extends approximately 3 layers into the deposit. The phase fraction model predicts the greatest variation in microstructural evolution to occur in a layer n after the deposition of layer n + 3. The results of the morphology model show that increased amounts of colony-alpha form near the top of a characteristic layer. It follows that a layer band (colony-alpha region) forms as a result of heating a region of material to a peak temperature just below the beta transus, where a large amount of primary-alpha dissolves. Upon cooling, colony-alpha forms intragranularly. The coupled thermal and microstructure models offer a way to quantitatively map microstructure during LMD processing of Ti-6Al-4V.
机译:激光金属沉积(LMD)将工艺灵活性,节省时间和降低生产钛合金组件的成本完美结合在一起。使用LMD方法加工钛合金的当前挑战是了解随着零件的逐层制造而产生的复杂的微观结构。目前的工作集中在多层Ti-6Al-4V沉积物的表征,热学和微观结构建模上。已经使用有限差分技术开发了一个热模型来预测LMD工艺的热历史。建立了预测α相分数和形态演变的微结构模型,以量化热循环对沉积的微结构演变的影响。分别根据抛物线速率定律假设一维板状溶解以及Johnson-Mehl-Avrami-Kolmorgorov(JMAK)成核和生长模型,对Alpha溶解和生长进行建模。使用简单的方法跟踪Alpha形态(集落-α和篮子编织-α)的演变。;沉积物的表征表明,复杂的微观结构由两个截然不同的区域组成:一个未发育的微观结构的过渡区域和一个特征层。在整个存款期间定期重复。过渡区域包含精细的网状组织和菌落-α形态。特征层包含α+β的两相混合物,其中α相显示出菌落-α(层带)和篮子编织-α形态的区域。沉积物中微观结构对比的不同区域与热循环有关。热模型结果表明,由β-transus定义的热影响区向沉积物中延伸了大约3层。相分数模型预测了在n + 3层沉积后n层中微观结构演化的最大变化。形态模型的结果表明,特征层顶部附近的菌落-α形式增加。随之而来的是,将材料区域加热到正好位于β瞬时温度以下的峰值温度,在该温度下大量的伯α溶解,因此形成了层带(集落-α区域)。冷却后,菌落-α在颗粒内形成。热和微观结构耦合模型提供了一种在Ti-6Al-4V的LMD处理过程中定量映射微观结构的方法。

著录项

  • 作者

    Kelly, Shawn Michael.;

  • 作者单位

    Virginia Polytechnic Institute and State University.;

  • 授予单位 Virginia Polytechnic Institute and State University.;
  • 学科 Materials science.;Engineering Materials science.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 319 p.
  • 总页数 319
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号