首页> 外文学位 >Structure and function of circadian clock proteins and deuterium isotope effects in nucleic acid hydrogen bonds.
【24h】

Structure and function of circadian clock proteins and deuterium isotope effects in nucleic acid hydrogen bonds.

机译:昼夜节律蛋白的结构和功能以及核酸氢键中的氘同位素效应。

获取原文
获取原文并翻译 | 示例

摘要

Circadian oscillators or clocks are a widespread, endogenous class of oscillatory mechanisms that control the -24h temporal pattern of diverse organism functions. In cyanobacteria this mechanism is formed by three proteins, KaiA, KaiB and KaiC. KaiA is shown here to be a two domain protein that directly interacts with KaiC and enhances the KaiC autokinase activity. The amino-terminal domain of KaiA can be structurally categorized as a pseudo-receiver, a class of proteins used in signaling cascades and activated by direct protein-protein interactions. The carboxy-terminal domain interacts directly with KaiC, is sufficient to enhance the KaiC autokinase activity in a manner similar to full-length KaiA, and adopts a unique, all alpha-helical dimeric fold. The structure of this domain raises interesting probabilities regarding the mode of KaiA-KaiC interaction. The two KaiA domains are shown to directly interact with each other, which suggests a possible mechanism of signal transfer from the amino to carboxy-terminal domain.; Hydrogen bonds are of paramount importance in nucleic acid structure and function. Here we show that changes in the width and anharmonicity of vibrational potential energy wells of hydrogen bonded groups can be measured in nucleic acids and can possibly be correlated to structural properties, such as length. Deuterium/protium fractionation factors, which are sensitive to the vibrational potential well width, were measured for the imino sites of thymidine residues involved in A:T base pairs or free in solution, and a correlation was established between decreasing fractionation factors and increasing imino proton chemical shift, deltaH3. Similarly, a correlation was observed between deltaH3 and deuterium isotope effects (DIE) on chemical shift of thymidine carbon atoms. Combined these results indicate that as hydrogen-bond strength increases the vibrational potential wells of imino protons widen with a corresponding increase in anharmonicity. However, trans-hydrogen bond DIE on carbon chemical shifts of A:T base-paired adenosine residues do not correlate with those measured on thymidine residues. We propose that this lack of correlation is due to DIE dependence on base-pair geometry, which is not easily measured by traditional NMR experiments.
机译:昼夜节律的振荡器或时钟是一种广泛的,内源性的振荡机制,可控制多种生物功能的-24h时间模式。在蓝细菌中,该机制由三种蛋白质KaiA,KaiB和KaiC形成。 KaiA在此处显示为两个结构域蛋白,可直接与KaiC相互作用并增强KaiC自身激酶活性。 KaiA的氨基末端结构域可以在结构上归类为伪受体,这是一种用于信号级联并通过直接的蛋白质-蛋白质相互作用激活的蛋白质。羧基末端结构域直接与KaiC相互作用,足以以类似于全长KaiA的方式增强KaiC自激激酶活性,并采用独特的所有α-螺旋二聚体折叠。该域的结构提出了有关KaiA-KaiC交互模式的有趣概率。显示两个KaiA结构域彼此直接相互作用,这表明信号从氨基转移到羧基末端结构域的可能机制。氢键在核酸结构和功能中至关重要。在这里,我们显示了可以在核酸中测量氢键基团的振动势能阱的宽度和非谐性的变化,并且可能与结构特性(例如长度)相关。测量了对振动势阱宽度敏感的氘/ pro分离因子,以测定参与A:T碱基对或溶液中游离的胸腺嘧啶残基的亚氨基位点,并确定降低的分离因子与增加的亚氨基质子之间的相关性化学位移,ΔH3。类似地,观察到deltaH3和氘同位素效应(DIE)对胸苷碳原子化学位移的相关性。综合这些结果表明,随着氢键强度的增加,亚氨基质子的振动势阱变宽,并且相应地非谐性增加。但是,A:T碱基配对的腺苷残基的碳化学位移上的反式氢键DIE与在胸苷残基上测得的值不相关。我们提出这种缺乏相关性是由于DIE对碱基对几何的依赖,而传统NMR实验不容易测量这种依赖。

著录项

  • 作者

    Vakonakis, Ioannis.;

  • 作者单位

    Texas A&M University.;

  • 授予单位 Texas A&M University.;
  • 学科 Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 175 p.
  • 总页数 175
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号