首页> 外文学位 >Mechanical behavior of microelectronics and power electronics solder joints under high current density: Analytical modeling and experimental investigation.
【24h】

Mechanical behavior of microelectronics and power electronics solder joints under high current density: Analytical modeling and experimental investigation.

机译:高电流密度下微电子学和电力电子焊点的力学行为:分析模型和实验研究。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation focuses on the mechanical reliability of microelectronics solder joints under high density electric current stressing. It contains both experimental and analytical modeling parts.; In the experimental part, high density current stressing experiments were conducted using flip-chip and Ball Grid Array (BGA) test vehicles. In addition to electromigration, thermomigration is also studied and observed. The major failure mechanism is identified as the void nucleation and growth due to the combined effects of electromigration and thermomigration. Nano-indentation tests show that the elastic modulus of a solder joint degrades during current stressing. A Pb phase coarsening model that includes the influence of current density is proposed. The Moire Interferometry technique is used to measure the in-situ displacement evolution of BGA solder joints under electric current stressing.; In the analytical modeling part, a diffusion-mechanical coupled stress-current density constitutive model for solder alloy under electromigration is presented. The constitutive model is numerically implemented into FEM code to simulate the displacement fields of the BGA lead-free solder joints under current stressing. Despite all of the assumptions and simplifications employed in the simulation, it predicts reasonably close displacement results to the Moire Interferometry experimental results in both spatial distribution and time history evolution. This indicates that the electromigration model is reasonably good at predicting the mechanical behavior of lead-free solder alloy under electric current stressing.
机译:本文主要研究高密度电流应力下微电子焊点的机械可靠性。它包含实验和分析建模部分。在实验部分,使用倒装芯片和球栅阵列(BGA)测试工具进行了高密度电流应力实验。除电迁移外,还研究和观察了热迁移。主要的失效机理被认为是由于电迁移和热迁移的共同作用而导致的空洞形核和长大。纳米压痕测试表明,在电流应力作用下,焊点的弹性模量会降低。提出了一种包含电流密度影响的Pb相粗化模型。莫尔干涉测量技术用于测量在电流应力下BGA焊点的原位位移演变。在分析建模部分,提出了电迁移条件下焊料合金的扩散-机械耦合应力-电流密度本构模型。本构模型被数字化实现为FEM代码,以模拟BGA无铅焊点在电流应力下的位移场。尽管在模拟中采用了所有假设和简化,但它在空间分布和时程演化方面都可以预测与摩尔纹干涉测量实验结果相当接近的位移结果。这表明电迁移模型在预测电流应力下的无铅焊料合金的机械性能方面具有相当好的预测能力。

著录项

  • 作者

    Ye, Hua.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Engineering Civil.; Engineering Mechanical.; Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 297 p.
  • 总页数 297
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;机械、仪表工业;无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号