首页> 外文学位 >Investigations of carbon-hydrogen activation and the conversion of methanol to triptane.
【24h】

Investigations of carbon-hydrogen activation and the conversion of methanol to triptane.

机译:研究碳氢活化和甲醇转化为曲丹。

获取原文
获取原文并翻译 | 示例

摘要

Broadly speaking, this thesis represents research towards understanding the mechanisms and important species related to small molecule conversion, namely methane to methanol and methanol to higher hydrocarbons. The first section is on understanding the catalytic formation of methanol from methane, with specific interest in using gold (Au). While this transformation is known to occur catalytically, very little is understood about how it happens. To study this reaction, well-defined Au-complexes were synthesized and reactions relevant to the possible catalytic cycles were examined. In doing so, the first simple Au(III)-monoalkyl complex was generated and characterized: (Idipp)AuI 2Me, where Idipp = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene). Kinetics experiments demonstrated that the complex reductively eliminates methyl iodide, which is relevant to the functionalization step in CH activation. At low concentrations of iodide, the reductive elimination happens faster, from an unobserved 3-coordinate intermediate. However, at high iodide concentrations, the pathway is still consistent with reductive elimination, but from a 5-coordinate intermediate. This is in contrast to the related platinum-system, as well as to density functional theory calculations done on the Au-system.;The second section studies the C-H activation step alone by close examination of the microscopic reverse: protonation of a metal-alkyl. It had previously been noted that the observed kinetic isotope effects (KIEs) were unusually high for the protonolysis of a few Pd complexes and one Pt complex. It was hypothesized that these high KIEs and involvement of quantum mechanical tunneling may indicate a change in the mechanism of the protonolysis reaction, from protonation at the metal center and reductive coupling to direct protonation of the M-Me bond. The experiments described here were designed to explicitly test this theory and demonstrated that no correlation can be made between mechanism and tunneling.;The third section is focused on the study of the conversion of methanol to highly branched alkanes that make good fuel additives, namely 2,2,3-trimethylbutane (triptane), amidst other alkanes, olefins, and aromatics. Catalyzed by ZnI 2 or InI3 at high temperatures, the reaction is hydrogen deficient: aromatics are formed as unsaturated by-products necessary for alkane generation. While the product distributions are somewhat different for the two different catalysts, the general mechanism is the same. While typical InI3 reactions generate more alkanes, more aromatics, and fewer olefins than ZnI2 reactions, longer reaction times and higher temperatures make the ZnI2 reaction look like the InI3 profile. Furthermore, InI3 can activate alkanes; it was found that InI 3 can "upgrade" other alkanes with methanol. Notably, a 1:1 mixture of 2,3-dimethylbutane and methanol can be converted into triptane with good selectivity and little aromatic formation; ZnI2 can carry out similar chemistry at higher temperatures. Quantification of the iodine-containing products in each reaction mixture was attempted because of its relevance to the system's industrial viability and found that these concentrations were significantly higher than would be acceptable in an industrial setting.
机译:从广义上讲,本论文代表了对理解与小分子转化有关的机理和重要种类的研究,即甲烷转化为甲醇和甲醇转化为高级烃。第一部分是关于从甲烷催化形成甲醇的认识,特别是对使用金(Au)的关注。尽管已知这种转变是催化发生的,但对其发生的方式知之甚少。为了研究该反应,合成了定义明确的Au-络合物,并检查了与可能的催化循环有关的反应。这样做,生成了第一个简单的Au(III)-单烷基络合物,并对其进行了表征:(Idipp)AuI 2Me,其中Idipp = 1,3-双(2,6-二异丙基苯基)咪唑-2-亚烷基。动力学实验表明,该配合物可还原性消除甲基碘,这与CH活化中的功能化步骤有关。在低浓度的碘化物下,还原反应的发生较快,这是由未观察到的三坐标中间体引起的。然而,在高碘化物浓度下,该途径仍与还原消除相一致,但来自5坐标中间体。这与相关的铂体系以及在Au体系上进行的密度泛函理论计算形成对比。第二部分仅通过仔细观察微观反面来研究CH活化步骤:金属烷基的质子化。以前已经注意到,对于几种Pd配合物和一种Pt配合物的质子分解,观察到的动力学同位素效应(KIEs)异常高。据推测,这些高KIE和量子力学隧穿的参与可能表明质子分解反应机理的改变,从金属中心的质子化和还原偶联到M-Me键的直接质子化。此处描述的实验旨在明确验证该理论,并证明机理与隧穿之间不存在任何关联。第三部分着重研究甲醇向高支链烷烃的转化,这些烷烃可作为良好的燃料添加剂,即2 1,2,3-三甲基丁烷(曲普烷),其他烷烃,烯烃和芳烃。在高温下被ZnI 2或InI3催化,该反应缺乏氢:形成芳烃作为烷烃生成所需的不饱和副产物。尽管两种不同催化剂的产物分布有所不同,但一般机理是相同的。尽管典型的InI3反应比ZnI2反应生成更多的烷烃,更多的芳烃和更少的烯烃,但更长的反应时间和更高的温度使ZnI2反应看起来像InI3曲线。此外,InI3可以活化烷烃。发现InI 3可以用甲醇“升级”其他烷烃。值得注意的是,可以将2,3-二甲基丁烷和甲醇的1:1混合物以良好的选择性和很少的芳族形成转化为曲丹。 ZnI2可以在更高的温度下进行相似的化学反应。由于它与系统的工业可行性相关,因此试图对每种反应混合物中的含碘产物进行定量,发现这些浓度明显高于工业环境中可接受的浓度。

著录项

  • 作者

    Scott, Valerie J.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Chemistry.;Organic chemistry.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 341 p.
  • 总页数 341
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号