首页> 外文学位 >Laminar Flame Speed Estimation from Experimental Data Using a Quasi-Dimensional Turbulent Flame Entrainment Combustion Simulation For Spark Ignition Engines.
【24h】

Laminar Flame Speed Estimation from Experimental Data Using a Quasi-Dimensional Turbulent Flame Entrainment Combustion Simulation For Spark Ignition Engines.

机译:使用准尺寸湍流火焰夹带燃烧模拟从实验数据估算层流火焰速度,用于火花点火发动机。

获取原文
获取原文并翻译 | 示例

摘要

The goal of this research is to develop a thermodynamic simulation of spark-ignition engine combustion that uses a predictive burn-rate model. Previously done thermodynamic engine simulations in MATLAB are based on a specified burn rate model. Also, the effect of turbulence parameters on the rate of mass burn up is not considered. A predictive burn rate model is necessary to study the effect of different fuels on spark ignition engine combustion. The effect of laminar flame speed and turbulent intensity on combustion is difficult to assess experimental due to the difficulty in the measurement of these two variables. Thus, the aim of this simulation is to thermodynamically model the spark ignition engine cycle taking into account the turbulence parameters and their effect on the combustion process. The simulation can be used for predictive studies of combustion of different varieties of fuels by calibration of laminar flame speed, assuming the turbulent intensity to be a fuel-independent parameter.;The key parameters of interest are the turbulence intensity and laminar flame speed. Both these parameters play a key role in controlling mass burn-up rate. The simulation intends to calculate mass fraction burned profile and turbulence intensity from a predictive combustion model based on the concept of turbulent flame entrainment and diffusive burn-up. An empirical relation for laminar flame speed is used for known fuel (gasoline) which can be later calibrated for variety of fuels. The simulation calculates the mass fraction burned profile based on calculated cylinder pressure, temperature and species concentration.;The cylinder pressure and temperature predicted by the simulation match well with the experimental data for the engine used for calibration. The MFB10, MFB50 and MFB90 crank angle positions simulated by the predictive combustion model were compared with those calculated from a commercially available engine thermodynamics program (AVL Concerto) which is based on experimental data and were found within 5--10% of each other. The turbulence parameters, laminar flame speed and the length scales during combustion also showed results in accordance with those shown by previous experiments / simulation.;The quasi-dimensional simulation is done in MATLAB for computational speed and acceptable accuracy. Using MATLAB also makes inserting additional sub-models easier to make the model more detailed and accurate. This simulation will serve as a student guide to engine modeling and also can be used as a base for more advanced simulations.
机译:这项研究的目的是开发使用预测燃烧率模型的火花点火发动机燃烧的热力学模拟。以前在MATLAB中完成的热力发动机仿真基于指定的燃烧率模型。同样,没有考虑湍流参数对质量燃耗速率的影响。为了研究不同燃料对火花点火发动机燃烧的影响,必须有一个预测燃烧率模型。由于难以测量这两个变量,层流火焰速度和湍流强度对燃烧的影响很难通过实验来评估。因此,该模拟的目的是考虑湍流参数及其对燃烧过程的影响,对火花点火发动机循环进行热力学建模。假定湍流强度是与燃料无关的参数,该模拟可用于通过层流火焰速度的校准来预测不同种类燃料燃烧的预测研究。感兴趣的关键参数是湍流强度和层流火焰速度。这两个参数在控制质量燃尽率中起着关键作用。该模拟旨在基于湍流火焰夹带和扩散燃烧的概念,根据预测燃烧模型计算质量分数燃烧曲线和湍流强度。层流火焰速度的经验关系用于已知的燃料(汽油),以后可以针对各种燃料进行校准。该模拟基于计算出的气缸压力,温度和物质浓度计算出燃烧的质量分数曲线;该仿真预测的气缸压力和温度与用于校准的发动机的实验数据非常吻合。将预测性燃烧模型模拟的MFB10,MFB50和MFB90曲柄角位置与根据实验数据从市售发动机热力学程序(AVL Concerto)计算出的曲柄角位置进行了比较,发现彼此之间的误差在5--10%之间。燃烧过程中的湍流参数,层流火焰速度和长度尺度也显示了与先前实验/模拟所显示的结果相符的结果。使用MATLAB还可以使插入其他子模型更加容易,从而使模型更加详细和准确。该模拟将作为发动机建模的学生指南,也可以用作更高级模拟的基础。

著录项

  • 作者

    Desai, Akash Sanjay.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Mechanical engineering.
  • 学位 M.S.
  • 年度 2011
  • 页码 124 p.
  • 总页数 124
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号