首页> 外文学位 >The microstructure-processing-property relationships in an aluminum matrix composite system reinforced by aluminum-copper-iron alloy particles.
【24h】

The microstructure-processing-property relationships in an aluminum matrix composite system reinforced by aluminum-copper-iron alloy particles.

机译:铝-铜-铁合金颗粒增强的铝基复合材料体系中的微观结构-加工-性能关系。

获取原文
获取原文并翻译 | 示例

摘要

Solid state vacuum sintering was studied in tap densified Al powder and in hot quasi-isostatically forged samples composed of commercial inert gas atomized or high purity Al powder, generated by a gas atomization reaction synthesis (GARS) technique. The GARS process results in spherical Al powder with a far thinner surface oxide. The overall results indicated the enhanced ability of GARS-processed Al and Al alloy powders for solid state sintering, which may lead to simplification of current Al powder consolidation processing methods.; Elemental Al-based composites reinforced with spherical Al-Cu-Fe alloy powders were produced by quasi-isostatic forging and vacuum hot pressing (VHP) consolidation methods. It was proved that spherical Al-Cu-Fe alloy powders can serve as an effective reinforcement particulate for elemental Al-based composites, because of their high hardness and a preferred type of matrix/reinforcement interfacial bonding, with reduced strain concentration around the particles. Ultimate tensile strength and yield strength of the composites were increased over the corresponding Al matrix values, far beyond typical observations. This remarkable strengthening was achieved without precipitation hardening and without severe strain hardening during consolidation because of the matrix choice (elemental Al) and the "low shear" consolidation methods utilized. This reinforcement effectiveness is further evidenced by elastic modulus measurements of the composites that are very close to the upper bound predictions of the rule of mixtures. The load partitioning measurements by neutron diffraction showed that composite samples made from GARS powders present significantly higher load transfer efficiency than the composites made from commercially atomized powders. Further analysis of the load sharing measurements and the calculated values of the mismatch of coefficient of thermal expansion (CTE) and the geometrically necessary dislocation (GND) effects suggest that these strengthening mechanisms can be combined to predict accurately the strength of the composites.; By neutron diffraction measurements, it also was found that the composites consolidated from Al and Al63Cu25Fe12 quasicrystal alloy reinforcement powders have compressive residual stress in the Al matrix, contrary to the tensile residual stress in typical Al/SiC composites. The composites made by the quasi-isostatic forging process exhibited higher tensile strengths and much higher compressive residual stresses than the composites made by the VHP process.
机译:研究了通过气体雾化反应合成(GARS)技术生成的,自来水致密化的Al粉和由商业惰性气体雾化或高纯度Al粉组成的准等静锻造热样品中的固态真空烧结。 GARS工艺产生的球形Al粉表面氧化物要薄得多。总体结果表明,经GARS处理的Al和Al合金粉末的固态烧结能力增强,这可能会简化当前的Al粉末固结处理方法。通过准等静锻和真空热压(VHP)固结方法生产了用球形Al-Cu-Fe合金粉末增强的元素铝基复合材料。事实证明,球形Al-Cu-Fe合金粉末可以用作元素铝基复合材料的有效增强颗粒,因为它们具有高硬度和优选的基体/增强界面结合类型,且颗粒周围的应力集中降低。复合材料的极限抗拉强度和屈服强度比相应的Al基体值有所提高,远远超出了典型观察值。由于基体的选择(元素Al)和所采用的“低剪切”固结方法,在固结过程中没有沉淀硬化并且没有严重的应变硬化就实现了这种显着的强化。复合材料的弹性模量测量结果进一步证明了这种增强效果,该测量结果非常接近于混合物规则的上限预测。通过中子衍射进行的载荷分配测量表明,由GARS粉末制成的复合材料样品比由商业雾化粉末制成的复合材料具有更高的载荷传递效率。进一步分析负载分担测量结果以及热膨胀系数(CTE)和几何上必要的位错(GND)效应不匹配的计算值,表明可以结合使用这些强化机制来准确预测复合材料的强度。通过中子衍射测量,还发现由Al和Al63Cu25Fe12准晶体合金增强粉末固结的复合材料在Al基体中具有压缩残余应力,这与典型的Al / SiC复合材料中的拉伸残余应力相反。与通过VHP工艺制造的复合材料相比,通过准等静锻工艺制造的复合材料具有更高的拉伸强度和更高的压缩残余应力。

著录项

  • 作者

    Tang, Fei.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Engineering Materials Science.; Engineering Metallurgy.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 194 p.
  • 总页数 194
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;冶金工业;
  • 关键词

  • 入库时间 2022-08-17 11:44:27

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号