首页> 外文学位 >Partial Differential Equation Modeling of Flow Cytometry Data from CFSE-based Proliferation Assays.
【24h】

Partial Differential Equation Modeling of Flow Cytometry Data from CFSE-based Proliferation Assays.

机译:流式细胞术数据基于CFSE的增殖分析的偏微分方程建模。

获取原文
获取原文并翻译 | 示例

摘要

The mammalian immune system is comprised of a complex network of cells which interact with each other as well as with external stimuli, and an immune response is characterized by the rapid proliferation (via division) of lymphocytes following exposure to some stimulating agent. Flow cytometric analysis of a proliferating cell population is a powerful and popular tool for the study of cell division and division-linked changes in cell behavior, as it permits the quick assessment of the phenotypic properties of a culture of proliferating cells. In particular, the development of the intracellular dye carboxyfluorescein succinimidyl ester (CFSE) [82] for the fluorescent labeling of cells has led to the need for quantitative models of division dynamics.;Some key features of a mathematical description of an immune response are an estimate of the number of responding cells and the manner in which those cells divide, differentiate, and die. Numerous mathematical treatments of CFSE flow cytometry data have been proposed to describe an immune response [38, 40, 51, 57, 62, 71], and each is motivated by the desire to relate the estimated numbers of cells in the population to average rates of division and death. Alternatively, the investigations of [75, 77] contain a structured partial differential equation (PDE) model (with CFSE fluorescence intensity as the structure variable) which can be fit directly to flow cytometry data.;After reviewing the data collection process and describing previous mathematical work, we focus on the application of such structured PDE models to CFSE histogram data. Several extensions and modifications of previous models are discussed and suggestions are presented to improve the agreement between model solutions and experimental data as well as to improve the physiological understanding of the model parameters. Next, the resulting structured PDE model is generalized into a system of PDE models representing the compartmentalization of the population of cells in terms of the number of divisions undergone since the beginning of the experiment. Mathematical aspects of this compartmental model are discussed, and the model is fit to a data set. It is shown that the compartmental model permits the quantification of cell counts in terms of the number of divisions undergone, so that key biological parameters such as population doubling time and precursor viability can be determined.;Finally, statistical models for the observed variability/noise in CFSE histogram data are discussed with implications for uncertainty quantification. It is revealed that several commonly held assumptions regarding the data collection procedure are not accurately re ected in the actual data. Using several additional data sets, experimental, intra-individual, and inter-individual variability in CFSE histogram data is qualitatively analyzed. The data collection procedure is then reexamined and a new statistical model of the data is hypothesized.;The models presented produce meaningful quantitative descriptions of the behavior of a dynamic population of cells and are sufficiently general to describe a wide array of proliferative behavior. Several generalizations of these models are also discussed with an eye toward experimental application. This work constitutes a significant first step toward the meaningful analysis of an immune response, and could provide a useful complement in experimental or diagnostic studies of the immune system.
机译:哺乳动物的免疫系统由相互影响以及与外部刺激相互作用的复杂细胞网络组成,免疫反应的特征是暴露于某些刺激剂后淋巴细胞快速增殖(通过分裂)。增殖细胞群的流式细胞仪分析是研究细胞分裂和细胞行为的分裂相关变化的强大而流行的工具,因为它可以快速评估增殖细胞培养物的表型特性。特别是,用于细胞荧光标记的细胞内染料羧基荧光素琥珀酰亚胺酯(CFSE)的发展[82]导致了对分裂动力学定量模型的需求。免疫反应的数学描述的一些关键特征是估计响应细胞的数量以及这些细胞分裂,分化和死亡的方式。已经提出了许多CFSE流式细胞术数据的数学方法来描述免疫反应[38,40,51,57,62,71],每种方法都是出于将群体中估计细胞数与平均率联系起来的愿望所驱动的分裂和死亡。或者,[75,77]的研究包含一个结构化的偏微分方程(PDE)模型(以CFSE荧光强度作为结构变量),可以直接适合流式细胞术数据。;在回顾了数据收集过程并描述了先前的在数学工作中,我们专注于将此类结构化PDE模型应用于CFSE直方图数据。讨论了先前模型的一些扩展和修改,并提出了一些建议,以改善模型解决方案与实验数据之间的一致性,并提高对模型参数的生理理解。接下来,将所得的结构化PDE模型概括为一个PDE模型系统,该模型表示自实验开始以来经历的分裂次数对细胞群体的划分。讨论了该部分模型的数学方面,并且该模型适合于数据集。结果表明,隔室模型允许根据经历的分裂数量对细胞计数进行定量,从而可以确定关键的生物学参数,例如群体倍增时间和前体生存力;最后,观察到的变异性/噪声的统计模型讨论了CFSE直方图数据中的不确定性量化。结果表明,关于数据收集程序的几个普遍假设并未在实际数据中准确反映。使用几个其他数据集,定性分析了CFSE直方图数据中的实验性,个体内和个体间变异性。然后重新检查数据收集程序,并假设一个新的数据统计模型。提出的模型对动态细胞群体的行为产生了有意义的定量描述,并且足够笼统地描述了各种各样的增殖行为。还针对实验应用讨论了这些模型的几种概括。这项工作是朝着有意义的免疫应答分析迈出的重要的第一步,并且可以为免疫系统的实验或诊断研究提供有用的补充。

著录项

  • 作者

    Thompson, William Clayton.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Applied Mathematics.;Biology Cell.;Health Sciences Immunology.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 151 p.
  • 总页数 151
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号