首页> 外文学位 >Engineering titanium surfaces for improving osteointegration.
【24h】

Engineering titanium surfaces for improving osteointegration.

机译:工程钛表面可改善骨整合。

获取原文
获取原文并翻译 | 示例

摘要

Titanium is one of the most important metallic biomedical materials in clinical applications. One of the key issues for successful application of titanium is the interaction at the interface between the titanium and the bone. The present study focuses on improving the surfaces of titanium to achieve better capability to bond with natural bone (i.e. better osteointegration). The objectives of this work include: (1) Developing microfabrication methods to produce micropatterns on titanium surfaces for promoting osteointegration; (2) Studying the calcium phosphate (Ca-P) formation on the chemical treated titanium surface and elucidating the mechanism of precipitation theoretically; and (3) Evaluating osteoconductivity of engineering titanium surfaces in vitro and in vivo.; Through mask electrochemical micromachining (TMEMM), jet electrochemical micromachining (Jet-EMM) and the confined etchant layer technique (CELT) were attempted to produce micropatterns on titanium surfaces. TMEMM has a high etching rate and good reproducibility and was used to produce micro-hole arrays on Ti plates for in vivo testing.; The driving force and nucleation rate of Ca-P precipitation in simulated body fluid (SBF) were analyzed based on the classical crystallization theory. SBF supersaturation with respect to HA, OCP and DCPD (dicalcium phosphate) was carefully calculated, considering all the association/dissociation reactions of related ion groups in SBF. The analysis indicates that the nucleation rate of OCP is substantially higher than that of HA, while HA is most thermodynamically stable in SBF. DCPD precipitation is thermodynamically impossible in normal SBF, unless calcium and phosphate ion concentrations of SBF increase.; Osteoconduction of Ti6Al4V surfaces under various conditions, including micro-patterned, alkali-treated, micro-patterned plus alkali-treated, and surfaces without any treatment, was evaluated. TMEMM was used to fabricate micro-hole arrays on the titanium alloy surfaces. In vivo experiments confirm the beneficial effect of alkaline treatment on osteoconduction. The results of in vivo experiments also indicate a synergistic effect of the alkaline treatment and the topographic pattern on osteoconduction. (Abstract shortened by UMI.)
机译:钛是临床应用中最重要的金属生物医学材料之一。成功应用钛的关键问题之一是钛与骨骼之间的界面处的相互作用。本研究的重点是改善钛的表面,使其具有更好的与天然骨粘合的能力(即更好的骨整合)。这项工作的目标包括:(1)开发微加工方法以在钛表面上产生微图案以促进骨整合; (2)研究化学处理钛表面上磷酸钙(Ca-P)的形成并从理论上阐明沉淀的机理; (3)在体外和体内评估工程钛表面的骨传导性。通过掩膜电化学微加工(TMEMM),喷射电化学微加工(Jet-EMM)和密闭蚀刻剂层技术(CELT),试图在钛表面上产生微图案。 TMEMM具有高蚀刻速率和良好的可重复性,并用于在Ti板上生产微孔阵列,以进行体内测试。基于经典结晶理论分析了模拟体液(SBF)中Ca-P沉淀的驱动力和成核速率。考虑到SBF中相关离子基团的所有缔合/离解反应,仔细计算了HA,OCP和DCPD(磷酸二钙)的SBF过饱和度。分析表明,OCP的成核速率明显高于HA,而HA在SBF中最热力学稳定。在正常的SBF中,DCPD沉淀在热力学上是不可能的,除非SBF中的钙和磷酸根离子浓度增加。评价了在各种条件下Ti6Al4V表面的骨传导,包括微图案化,碱处理,微图案加碱处理以及未经任何处理的表面。 TMEMM用于在钛合金表面上制造微孔阵列。体内实验证实了碱性治疗对骨传导的有益作用。体内实验的结果还表明了碱性处理和地形图对骨传导的协同作用。 (摘要由UMI缩短。)

著录项

  • 作者

    Lu, Xiong.;

  • 作者单位

    Hong Kong University of Science and Technology (People's Republic of China).;

  • 授予单位 Hong Kong University of Science and Technology (People's Republic of China).;
  • 学科 Engineering Materials Science.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号