首页> 外文学位 >System identification and control of the standpipe in a cold flow circulating fluidized bed.
【24h】

System identification and control of the standpipe in a cold flow circulating fluidized bed.

机译:冷流循环流化床中立管的系统识别和控制。

获取原文
获取原文并翻译 | 示例

摘要

Circulating fluidized beds (CFB) have been widely applied to many areas of industry such as chemical processing, petroleum refining, catalytic cracker processing, power generation, and waste treatment.; Recently, a mathematical model of the CFCFB standpipe was successfully developed and tested using an extended Kalman filter (EKF) and an Hinfinity estimator algorithm. Using this standpipe mathematical model requires a solids circulation rate (SCR) to be a measurable variable offered from a spiral installed in the standpipe of the CFCFB. In this research, a linear state space system model is developed in order to estimate the solids circulation rate, using a least squares estimator and a subspace algorithm.; In this research, a sliding mode estimator is applied in order to estimate the states and the bed-height using a mathematical model with the estimated SCR from the pressure drop profiles. The sliding mode estimator uses the Lyapunov stability criteria to obtain a gain that drives the estimator dynamic to a defined sliding surface, which usually is the first or second order differential equation of the error dynamic defined as the difference between the mathematical model equation and the estimator dynamic.; Although an entire CFCFB dynamic system has not been built, extensive experimental data sets are available, so a neural network is a strong candidate in building the entire CFCFB system dynamic model. In this research, the neural network is used to obtain the entire system model of the CFCFB for simulation purposes. In the neural network, back-propagation algorithms are adapted and tansig functions are used for the neurons. (Abstract shortened by UMI.)
机译:循环流化床(CFB)已广泛应用于许多工业领域,例如化学加工,石油精炼,催化裂化器加工,发电和废物处理。最近,使用扩展的卡尔曼滤波器(EKF)和Hinfinity估计器算法成功开发并测试了CFCFB立管的数学模型。使用此竖管数学模型需要将固体循环速率(SCR)作为可测量的变量,该变量是由安装在CFCFB竖管中的螺旋线提供的。在这项研究中,使用最小二乘估计器和子空间算法开发了线性状态空间系统模型,以估计固体循环速率。在这项研究中,使用滑模估计器,以便使用数学模型来估计状态和床高,其中数学模型具有从压降曲线估计的SCR。滑模估计器使用Lyapunov稳定性准则来获得将估计器动态驱动到定义的滑动表面的增益,该增益通常是误差动态的一阶或二阶微分方程,定义为数学模型方程与估计器之间的差。动态。;尽管尚未构建完整的CFCFB动态系统,但可以使用大量的实验数据集,因此神经网络是构建整个CFCFB系统动态模型的理想选择。在本研究中,神经网络用于获得CFCFB的整个系统模型以进行仿真。在神经网络中,采用了反向传播算法,并且将tansig函数用于神经元。 (摘要由UMI缩短。)

著录项

  • 作者

    Park, Juchirl.;

  • 作者单位

    West Virginia University.;

  • 授予单位 West Virginia University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 112 p.
  • 总页数 112
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号