首页> 外文学位 >Simulation of gas dynamics, radiation and particulates in volcanic plumes on Io.
【24h】

Simulation of gas dynamics, radiation and particulates in volcanic plumes on Io.

机译:在Io上模拟火山羽中的气体动力学,辐射和微粒。

获取原文
获取原文并翻译 | 示例

摘要

Volcanic plumes on Jupiter's moon Io are modeled using the direct simulation Monte Carlo (DSMC) method. The main goal of this work is to improve the understanding of Ionian atmosphere itself and the internal processes that are responsible for the volcanic plumes with rarefied gas dynamics modeling techniques developed for aerospace engineering applications.; A DSMC model including spherical geometry, variable gravity, internal energy exchange (discrete vibration-translation and continuous rotation-translation energy exchange) in the gas, infrared and microwave emission from the gas, multi-domain sequential calculation to resolve the fast emission event, opacity and two phase gas/particle flow, has been developed. Increasing confidence in our model has been built up through the encouraging matches to and agreements with a variety of observations, such as plume shape, vertical gas column density in the plumes, plume images, plume shadows, ring depositions, etc.; A concept of virtual vent is proposed for both volcanic tube and lava lake plumes. A parametric study of the two most important parameters at the virtual vent---velocity and temperature---is performed. Constraints are put on the vent conditions via the observables such as the canopy shock heights, peak gas deposition ring radii, vertical and tangential gas column densities, and total gas mass and emission power. Also, the flow of refractory 1 nm--1 mum particles entrained in the gas is modeled with "overlay" techniques which assume that the background gas flow is not altered by the particles. The column density along the tangential lines-of-sight and the shadow cast by the plume are calculated and compared with Voyager and Galileo images. Encouraging matches are found between simulations and observations.; The model predicts the existence of a canopy-shaped shock inside the gas plume, a multiple bounce shock structure around a dayside plume, a frost depletion by the gas bounce, concentration of emission in the vibrational bands in the vent vicinity and re-emission at the shocks for certain band. An upper limit on the size of spherical particles that can track the gas flow in the outer portion of the plumes is ∼10 nm. Particles of size ∼1 nm can track the gas flow well throughout the entire plume. A subsolar frost temperature in the range of ∼110--118 K is suggested.
机译:使用直接模拟蒙特卡洛(DSMC)方法对木星月球Io上的火山羽建模。这项工作的主要目的是通过为航空航天工程应用开发的稀有气体动力学建模技术,增进对爱奥尼亚大气本身以及对火山羽负责的内部过程的理解。 DSMC模型包括球形几何,可变重力,气体内部能量交换(离散振动平移和连续旋转-平移能量交换),气体的红外和微波发射,多域顺序计算以解决快速发射事件,已经开发出不透明性和两相气体/颗粒流。通过对各种观察结果的令人鼓舞的匹配和一致,建立了对我们模型的越来越多的信心,例如羽状,羽状中垂直气柱密度,羽状图像,羽状阴影,环沉积等;提出了针对火山管和熔岩湖羽流的虚拟通风口的概念。对虚拟通风口的两个最重要参数-速度和温度-进行了参数研究。通过可观察到的条件来限制排放条件,例如顶篷的冲击高度,峰值气体沉积环半径,垂直和切向气柱密度以及总气体质量和排放功率。同样,用“覆盖”技术对夹带在气体中的难熔的1 nm--1妈妈粒子的流动进行建模,该技术假定背景气体流量不会被粒子改变。计算沿切线视线的列密度和烟羽投射的阴影,并将其与Voyager和Galileo图像进行比较。在模拟和观察之间找到令人鼓舞的匹配。该模型预测了气体羽流内部是否存在冠层状的冲击,日间羽流周围是否存在多次反弹的冲击结构,气体反弹导致的霜耗,排气口附近振动带中的发射集中以及在近处的重新发射。某些乐队的震撼。可以跟踪羽流外部气体流动的球形颗粒的大小上限为〜10 nm。大小约为1 nm的颗粒可以很好地跟踪整个羽流中的气流。建议的亚太阳霜冻温度范围约为110--118 K.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号