首页> 外文学位 >Discovery of Novel Amidotransferase Activity Involved In Archaeosine Biosynthesis and Structural and Kinetic Investigation of QueF, an Enzyme Involved in Queuosine Biosynthesis.
【24h】

Discovery of Novel Amidotransferase Activity Involved In Archaeosine Biosynthesis and Structural and Kinetic Investigation of QueF, an Enzyme Involved in Queuosine Biosynthesis.

机译:涉及古生物合成的新型酰胺转移酶活性的发现以及涉及QueuFine生物合成的酶QueF的结构和动力学研究。

获取原文
获取原文并翻译 | 示例

摘要

The 7-deazaguanosine nucleosides queuosine (Q) and archaeosine (G +) are two of the most structurally complex modified nucleosides found in tRNA. Q is found exclusively in the wobble position of tRNAGUN coding for the amino acids asparagine, aspartate, histidine and tyrosine in eukarya and bacteria, while G+ occurs in nearly all archaeal tRNA at position 15.;In archaea preQ0 is inserted into tRNA by the enzyme tRNA-guanine transglycosylase (TGT), which catalyzes the exchange of guanine with preQ 0 to produce preQ0-tRNA. The first objective of this study was to identify and characterize the enzyme(s) catalyzing the conversion of preQ0-tRNA to G+-tRNA. Comparative genomics identified a protein family possibly involved in the final steps of archaeosine biosynthesis, which was annotated as TgtA2. Structure based alignments comparing TGT and TgtA2 revealed that TgtA2 lacked key TGT catalytic residues and contained an additional module. The gene corresponding to tgtA2 from Methanocaldococcus jannaschii (mj1022) was cloned, expressed and the purified recombinant enzyme characterized. Recombinant MjTgtA2 was shown to convert preQ0-tRNA to G+-tRNA using glutamine, asparagine or NH4+ as nitrogen donors in an ATP-independent reaction. This is the only example of the conversion of a nitrile to a formamidine known in biology.;QueF catalyzes the reduction of preQ0 to 7-aminomethyl-7-deazaguanine (preQ1) in the queuosine biosynthetic pathway. The second aim of this study was the transient state kinetic analysis of substrate binding and catalysis by the enzyme QueF, as well as investigation of the effects of ligands on its quaternary structure. Gel filtration and sedimentation equilibrium analyses indicated that QueF exists as a hybrid population in a rapid equilibrium between decamer and pentamer states. Addition of preQ0 to QueF resulted in shifting the equilibrium towards the decamer state, as did the addition of divalent metals. Potassium chloride at high concentrations was found to disrupt the quaternary structure of QueF. Intrinsic tryptophan and NADPH fluorescence was used to determine the substrate binding to QueF by stopped-flow kinetic studies. Studies on the binding of preQ0 to QueF in conjuction with binding NADPH to the QueF mutant E78A-thioimide intermediate suggested a two-step mechanism consisting of a fast bimolecular process and a subsequent slower unimolecular process, while the binding of preQ0 to the C55A mutant was monophasic, consisting of only the fast bimolecular process. Thioimide formation was monitored by UV-Vis; under single turnover conditions the data fit well to single exponential rise. However, at high preQ0 concentrations two phases could be observed. The reduction of the thioimide was determined under single turnover conditions by both UV-Vis and fluorescence, and comparable rates were obtained from both techniques. These results indicate that the binding of preQ0 and NADPH to QueF, as well as thioimide formation, are very rapid; and that reduction of the thioimide is most likely the rate limiting step. Analysis of component rates suggests structural changes occur between these steps, further limiting the overall rate.
机译:7-脱氮鸟苷核苷queuosine(Q)和archaeosine(G +)是tRNA中结构最复杂的两个修饰核苷。 Q仅存在于真核生物和细菌中编码天冬酰胺,天冬氨酸,组氨酸和酪氨酸氨基酸的tRNAGUN的摆动位置,而G +几乎出现在第15位的所有古细菌tRNA中;在古细菌中,preQ0通过酶插入到tRNA中tRNA-鸟嘌呤转糖基酶(TGT),催化鸟嘌呤与preQ 0的交换,产生preQ0-tRNA。这项研究的第一个目标是鉴定和表征催化preQ0-tRNA转化为G + -tRNA的酶。比较基因组学确定了可能与古生物合成的最终步骤有关的蛋白质家族,其注释为TgtA2。基于结构的比对比较了TGT和TgtA2,发现TgtA2缺少​​关键的TGT催化残基,并包含一个额外的模块。克隆,表达与来自詹氏甲烷球菌的tgtA2相对应的基因(mj1022),并表征纯化的重组酶。显示重组MjTgtA2在不依赖ATP的反应中使用谷氨酰胺,天冬酰胺或NH4 +作为氮供体将preQ0-tRNA转化为G + -tRNA。这是生物学上已知的腈转化为甲am的唯一例子。QueF催化Queusine生物合成途径中的preQ0还原为7-氨基甲基-7-脱氮鸟嘌呤(preQ1)。这项研究的第二个目的是对QueF酶对底物结合和催化的瞬态动力学分析,以及对配体对其四级结构的影响的研究。凝胶过滤和沉降平衡分析表明QueF作为杂种种群存在,在decamer和pentamer状态之间快速平衡。 preQ0加入QueF导致平衡朝着decamer状态转移,二价金属加入也是如此。发现高浓度的氯化钾会破坏QueF的四级结构。通过停止流动力学研究,使用固有色氨酸和NADPH荧光确定底物与QueF的结合。关于preQ0与QueF的结合以及与NADPH与QueF突变体E78A-硫酰亚胺中间体的结合的研究表明,该过程由两步机制组成:快速的双分子过程和随后的较慢的单分子过程,而preQ0与C55A突变体的结合是单相的,仅由快速的双分子过程组成。通过UV-Vis监测硫酰亚胺的形成;在单一周转条件下,数据非常适合单一指数上升。但是,在高preQ0浓度下,可以观察到两相。硫酰亚胺的还原率是在单一转换条件下通过UV-Vis和荧光确定的,并且从这两种技术中均获得了相当的比率。这些结果表明preQ0和NADPH与QueF的结合以及硫酰亚胺的形成非常迅速。硫酰亚胺的还原很可能是限速步骤。成分比率的分析表明,这些步骤之间发生结构变化,从而进一步限制了整体比率。

著录项

  • 作者单位

    Portland State University.;

  • 授予单位 Portland State University.;
  • 学科 Chemistry Analytical.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号