首页> 外文学位 >Computational studies of electron transfer proteins: Rubredoxin-type proteins and ferredoxin.
【24h】

Computational studies of electron transfer proteins: Rubredoxin-type proteins and ferredoxin.

机译:电子转移蛋白的计算研究:氧化还原蛋白型蛋白和铁氧还蛋白。

获取原文
获取原文并翻译 | 示例

摘要

Iron-sulfur proteins are an important class of electron transfer proteins found universally in living organisms, serving vital roles in the electron transport chains of cellular energy utilization. Determining the molecular basis of electron transfer properties of these proteins is important in understanding how they promote fast and efficient energy flow in the cell.;The reduction potential of an electron transfer protein is one of its most important properties since its sign and magnitude affects the direction and rate of electron transfer between redox sites. Homologous iron-sulfur proteins with the same redox site exhibit a broad range of reduction potentials, and thus serve as ideal models for unraveling how the protein tunes the reduction potential of its redox site. Here, the determinants responsible for the high reduction potential of rubredoxin-like domain of rubrerythrin relative to rubredoxin were identified using a bioinformatic sequence/electrostatic structure analysis and molecular dynamics simulations. In addition, the biologically relevant dimer of rubrerythrin was identified as the dimer with a calculated reduction potential in good agreement with experiment using a combination of a quantum mechanical calculation of the redox site and a Poisson-Boltzmann calculation of the interaction between the redox site and the surrounding environment. This approach is being developed into a general method for identifying biologically relevant oligomers of redox-active proteins.;The reorganization energy of an electron transfer protein due to the polarization of the protein and solvent around the redox site is another important property because the polarization creates the activation barrier for electron transfer and thus affects the electron transfer rate. Here, the intramolecular electron transfer in the 2[4Fe-4S] ferredoxins was investigated using molecular dynamics simulations. The reorganization in response to the electron transfer occured mostly in picoseconds, much faster than most biological electron transfers, which implies electron transfer chains may be viewed as a series of equilibrium transfers. In addition, the polarization due to the surrounding solvent was very large but highly coupled to that of the protein and its counterions. Thus, although dynamics of the counterions and protein were slow individually, the net time scale of the reorganization was fast.
机译:铁硫蛋白是在生物体内普遍发现的一类重要的电子转移蛋白,在细胞能量利用的电子传输链中起着至关重要的作用。确定这些蛋白质的电子转移性质的分子基础对于理解它们如何促进细胞中快速有效的能量流非常重要。电子转移蛋白质的还原电位是其最重要的性质之一,因为其符号和大小会影响蛋白质的转移。氧化还原位点之间电子转移的方向和速率。具有相同氧化还原位点的同源铁硫蛋白具有广泛的还原电势,因此可作为阐明蛋白质如何调节其氧化还原位电势的理想模型。在这里,使用生物信息学序列/静电结构分析和分子动力学模拟确定了决定因素,该决定因素是导致红血球蛋白的红血球蛋白样结构域相对于红血球蛋白高还原潜力的决定因素。此外,通过结合使用氧化还原位点的量子力学计算和氧化还原位点之间的相互作用的Poisson-Boltzmann计算,将紫杉醇的生物学相关二聚体鉴定为具有计算的还原电位的二聚体。周围的环境。该方法正被开发为鉴定氧化还原活性蛋白的生物学相关低聚物的通用方法。;由于蛋白质和溶剂在氧化还原位点周围的极化,电子转移蛋白质的重组能是另一重要特性,因为极化会产生电子传递的激活屏障,从而影响电子传递速率。在这里,使用分子动力学模拟研究了2 [4Fe-4S]铁氧还蛋白中的分子内电子转移。响应电子转移的重组通常在皮秒内发生,比大多数生物电子转移快得多,这意味着电子转移链可被视为一系列平衡转移。另外,由于周围溶剂引起的极化非常大,但与蛋白质及其抗衡离子的极化高度相关。因此,尽管抗衡离子和蛋白质的动力学单独变慢,但重组的净时间尺度却很快。

著录项

  • 作者

    Luo, Yan.;

  • 作者单位

    Georgetown University.;

  • 授予单位 Georgetown University.;
  • 学科 Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 220 p.
  • 总页数 220
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号